Vehicle teleoperation has numerous potential applications, including serving as a backup solution for autonomous vehicles, facilitating remote delivery services, and enabling hazardous remote operations. However, complex urban scenarios, limited situational awareness, and network delay increase the cognitive workload of human operators and degrade teleoperation performance. To address this, the successive reference pose tracking (SRPT) approach was introduced in earlier work, which transmits successive reference poses to the remote vehicle instead of steering commands. The operator generates reference poses online with the help of a joystick steering and an augmented display, potentially mitigating the detrimental effects of delays. However, it is not clear which minimal set of sensors is essential for the SRPT vehicle teleoperation control loop. This paper tests the robustness of the SRPT approach in the presence of state estimation inaccuracies, environmental disturbances, and measurement noises. The simulation environment, implemented in Simulink, features a 14-dof vehicle model and incorporates difficult maneuvers such as tight corners, double-lane changes, and slalom. Environmental disturbances include low adhesion track regions and strong cross-wind gusts. The results demonstrate that the SRPT approach, using either estimated or actual states, performs similarly under various worst-case scenarios, even without a position sensor requirement. Additionally, the designed state estimator ensures sufficient performance with just an inertial measurement unit, wheel speed encoder, and steer encoder, constituting a minimal set of essential sensors for the SRPT vehicle teleoperation control loop.
There are two major challenges for scaling up robot navigation around dynamic obstacles: the complex interaction dynamics of the obstacles can be hard to model analytically, and the complexity of planning and control grows exponentially in the number of obstacles. Data-driven and learning-based methods are thus particularly valuable in this context. However, data-driven methods are sensitive to distribution drift, making it hard to train and generalize learned models across different obstacle densities. We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs) to achieve scalability. Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle. Through decomposition, we can generalize control policies trained only with a small number of obstacles, to environments where the obstacle density can be 100x higher. We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods including potential fields, end-to-end reinforcement learning, and model-predictive control. We also perform hardware experiments and show the practical effectiveness of the approach in the supplementary video.
Manual assembly workers face increasing complexity in their work. Human-centered assistance systems could help, but object recognition as an enabling technology hinders sophisticated human-centered design of these systems. At the same time, activity recognition based on hand poses suffers from poor pose estimation in complex usage scenarios, such as wearing gloves. This paper presents a self-supervised pipeline for adapting hand pose estimation to specific use cases with minimal human interaction. This enables cheap and robust hand posebased activity recognition. The pipeline consists of a general machine learning model for hand pose estimation trained on a generalized dataset, spatial and temporal filtering to account for anatomical constraints of the hand, and a retraining step to improve the model. Different parameter combinations are evaluated on a publicly available and annotated dataset. The best parameter and model combination is then applied to unlabelled videos from a manual assembly scenario. The effectiveness of the pipeline is demonstrated by training an activity recognition as a downstream task in the manual assembly scenario.
Nowadays, there are few unmanned aerial vehicles (UAVs) capable of flying, walking and grasping. A drone with all these functionalities can significantly improve its performance in complex tasks such as monitoring and exploring different types of terrain, and rescue operations. This paper presents MorphoArms, a novel system that consists of a morphogenetic chassis and a hand gesture recognition teleoperation system. The mechanics, electronics, control architecture, and walking behavior of the morphogenetic chassis are described. This robot is capable of walking and grasping objects using four robotic limbs. Robotic limbs with four degrees-of-freedom are used as pedipulators when walking and as manipulators when performing actions in the environment. The robot control system is implemented using teleoperation, where commands are given by hand gestures. A motion capture system is used to track the user's hands and to recognize their gestures. The method of controlling the robot was experimentally tested in a study involving 10 users. The evaluation included three questionnaires (NASA TLX, SUS, and UEQ). The results showed that the proposed system was more user-friendly than 56% of the systems, and it was rated above average in terms of attractiveness, stimulation, and novelty.
The demand of computational resources for the modeling process increases as the scale of the datasets does, since traditional approaches for regression involve inverting huge data matrices. The main problem relies on the large data size, and so a standard approach is subsampling that aims at obtaining the most informative portion of the big data. In the current paper, we explore an existing approach based on leverage scores, proposed for subdata selection in linear model discrimination. Our objective is to propose the aforementioned approach for selecting the most informative data points to estimate unknown parameters in both the first-order linear model and a model with interactions. We conclude that the approach based on leverage scores improves existing approaches, providing simulation experiments as well as a real data application.
Observational studies are frequently used to estimate the effect of an exposure or treatment on an outcome. To obtain an unbiased estimate of the treatment effect, it is crucial to measure the exposure accurately. A common type of exposure misclassification is recall bias, which occurs in retrospective cohort studies when study subjects may inaccurately recall their past exposure. Specifically, differential recall bias can be problematic when examining the effect of a self-reported binary exposure since the magnitude of recall bias can differ between groups. In this paper, we provide the following contributions: 1) we derive bounds for the average treatment effect (ATE) in the presence of recall bias; 2) we develop several estimation approaches under different identification strategies; 3) we conduct simulation studies to evaluate their performance under several scenarios of model misspecification; 4) we propose a sensitivity analysis method that can examine the robustness of our results with respect to different assumptions; and 5) we apply the proposed framework to an observational study, estimating the effect of childhood physical abuse on adulthood mental health.
Synthetic time series are often used in practical applications to augment the historical time series dataset for better performance of machine learning algorithms, amplify the occurrence of rare events, and also create counterfactual scenarios described by the time series. Distributional-similarity (which we refer to as realism) as well as the satisfaction of certain numerical constraints are common requirements in counterfactual time series scenario generation requests. For instance, the US Federal Reserve publishes synthetic market stress scenarios given by the constrained time series for financial institutions to assess their performance in hypothetical recessions. Existing approaches for generating constrained time series usually penalize training loss to enforce constraints, and reject non-conforming samples. However, these approaches would require re-training if we change constraints, and rejection sampling can be computationally expensive, or impractical for complex constraints. In this paper, we propose a novel set of methods to tackle the constrained time series generation problem and provide efficient sampling while ensuring the realism of generated time series. In particular, we frame the problem using a constrained optimization framework and then we propose a set of generative methods including ``GuidedDiffTime'', a guided diffusion model to generate realistic time series. Empirically, we evaluate our work on several datasets for financial and energy data, where incorporating constraints is critical. We show that our approaches outperform existing work both qualitatively and quantitatively. Most importantly, we show that our ``GuidedDiffTime'' model is the only solution where re-training is not necessary for new constraints, resulting in a significant carbon footprint reduction.
Over-the-air computation (AirComp), as a data aggregation method that can improve network efficiency by exploiting the superposition characteristics of wireless channels, has received much attention recently. Meanwhile, the orthogonal time frequency space (OTFS) modulation can provide a strong Doppler resilience and facilitates reliable transmission for high-mobility communications. Hence, in this work, we investigate an OTFS-based AirComp system in the presence of time-frequency dual-selective channels. In particular, we commence from the development of a novel transmission framework for the considered system, where the pilot signal is sent together with data and the channel estimation is implemented according to the echo from the access point to the sensor, thereby reducing the overhead of channel state information (CSI) feedback. Hereafter, based on the CSI estimated from the previous frame, a robust precoding matrix aiming at minimizing mean square error in the current frame is designed, which takes into account the estimation error from the receiver noise and the outdated CSI. The simulation results demonstrate the effectiveness of the proposed robust precoding scheme by comparing it with the non-robust precoding. The performance gain is more obvious in high signal-to-noise ratio in case of large channel estimation errors.
With the rapid growth of computing powers and recent advances in deep learning, we have witnessed impressive demonstrations of novel robot capabilities in research settings. Nonetheless, these learning systems exhibit brittle generalization and require excessive training data for practical tasks. To harness the capabilities of state-of-the-art robot learning models while embracing their imperfections, we present Sirius, a principled framework for humans and robots to collaborate through a division of work. In this framework, partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably; meanwhile, human operators monitor the process and intervene in challenging situations. Such a human-robot team ensures safe deployments in complex tasks. Further, we introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions. The core idea is re-weighing training samples with approximated human trust and optimizing the policies with weighted behavioral cloning. We evaluate Sirius in simulation and on real hardware, showing that Sirius consistently outperforms baselines over a collection of contact-rich manipulation tasks, achieving an 8% boost in simulation and 27% on real hardware than the state-of-the-art methods in policy success rate, with twice faster convergence and 85% memory size reduction. Videos and more details are available at //ut-austin-rpl.github.io/sirius/
With the fast development of driving automation technologies, user psychological acceptance of driving automation has become one of the major obstacles to the adoption of the driving automation technology. The most basic function of a passenger car is to transport passengers or drivers to their destinations safely and comfortably. Thus, the design of the driving automation should not just guarantee the safety of vehicle operation but also ensure occupant subjective level of comfort. Hence this paper proposes a local path planning algorithm for obstacle avoidance with occupant subjective feelings considered. Firstly, turning and obstacle avoidance conditions are designed, and four classifiers in machine learning are used to respectively establish subjective and objective evaluation models that link the objective vehicle dynamics parameters and occupant subjective confidence. Then, two potential fields are established based on the artificial potential field, reflecting the psychological feeling of drivers on obstacles and road boundaries. Accordingly, a path planning algorithm and a path tracking algorithm are designed respectively based on model predictive control, and the psychological safety boundary and the optimal classifier are used as part of cost functions. Finally, co-simulations of MATLAB/Simulink and CarSim are carried out. The results confirm the effectiveness of the proposed control algorithm, which can avoid obstacles satisfactorily and improve the psychological feeling of occupants effectively.
The nature of explanations provided by an explainable AI algorithm has been a topic of interest in the explainable AI and human-computer interaction community. In this paper, we investigate the effects of natural language explanations' specificity on passengers in autonomous driving. We extended an existing data-driven tree-based explainer algorithm by adding a rule-based option for explanation generation. We generated auditory natural language explanations with different levels of specificity (abstract and specific) and tested these explanations in a within-subject user study (N=39) using an immersive physical driving simulation setup. Our results showed that both abstract and specific explanations had similar positive effects on passengers' perceived safety and the feeling of anxiety. However, the specific explanations influenced the desire of passengers to takeover driving control from the autonomous vehicle (AV), while the abstract explanations did not. We conclude that natural language auditory explanations are useful for passengers in autonomous driving, and their specificity levels could influence how much in-vehicle participants would wish to be in control of the driving activity.