亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With growing concerns surrounding privacy and regulatory compliance, the concept of machine unlearning has gained prominence, aiming to selectively forget or erase specific learned information from a trained model. In response to this critical need, we introduce a novel approach called Attack-and-Reset for Unlearning (ARU). This algorithm leverages meticulously crafted adversarial noise to generate a parameter mask, effectively resetting certain parameters and rendering them unlearnable. ARU outperforms current state-of-the-art results on two facial machine-unlearning benchmark datasets, MUFAC and MUCAC. In particular, we present the steps involved in attacking and masking that strategically filter and re-initialize network parameters biased towards the forget set. Our work represents a significant advancement in rendering data unexploitable to deep learning models through parameter re-initialization, achieved by harnessing adversarial noise to craft a mask.

相關內容

The growing integration of large language models (LLMs) into social operations amplifies their impact on decisions in crucial areas such as economics, law, education, and healthcare, raising public concerns about these models' discrimination-related safety and reliability. However, prior discrimination measuring frameworks solely assess the average discriminatory behavior of LLMs, often proving inadequate due to the overlook of an additional discrimination-leading factor, i.e., the LLMs' prediction variation across diverse contexts. In this work, we present the Prejudice-Caprice Framework (PCF) that comprehensively measures discrimination in LLMs by considering both their consistently biased preference and preference variation across diverse contexts. Specifically, we mathematically dissect the aggregated contextualized discrimination risk of LLMs into prejudice risk, originating from LLMs' persistent prejudice, and caprice risk, stemming from their generation inconsistency. In addition, we utilize a data-mining approach to gather preference-detecting probes from sentence skeletons, devoid of attribute indications, to approximate LLMs' applied contexts. While initially intended for assessing discrimination in LLMs, our proposed PCF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply our discrimination-measuring framework to 12 common LLMs, yielding intriguing findings: i) modern LLMs demonstrate significant pro-male stereotypes, ii) LLMs' exhibited discrimination correlates with several social and economic factors, iii) prejudice risk dominates the overall discrimination risk and follows a normal distribution, and iv) caprice risk contributes minimally to the overall risk but follows a fat-tailed distribution, suggesting that it is wild risk requiring enhanced surveillance.

Changes in facial expression, head movement, body movement and gesture movement are remarkable cues in sign language recognition, and most of the current continuous sign language recognition(CSLR) research methods mainly focus on static images in video sequences at the frame-level feature extraction stage, while ignoring the dynamic changes in the images. In this paper, we propose a novel motor attention mechanism to capture the distorted changes in local motion regions during sign language expression, and obtain a dynamic representation of image changes. And for the first time, we apply the self-distillation method to frame-level feature extraction for continuous sign language, which improves the feature expression without increasing the computational resources by self-distilling the features of adjacent stages and using the higher-order features as teachers to guide the lower-order features. The combination of the two constitutes our proposed holistic model of CSLR Based on motor attention mechanism and frame-level Self-Distillation (MAM-FSD), which improves the inference ability and robustness of the model. We conduct experiments on three publicly available datasets, and the experimental results show that our proposed method can effectively extract the sign language motion information in videos, improve the accuracy of CSLR and reach the state-of-the-art level.

The superior performance of large foundation models relies on the use of massive amounts of high-quality data, which often contain sensitive, private and copyrighted material that requires formal protection. While differential privacy (DP) is a prominent method to gauge the degree of security provided to the models, its application is commonly limited to the model fine-tuning stage, due to the performance degradation when applying DP during the pre-training stage. Consequently, DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training process. In this work, we first provide a theoretical understanding of the efficacy of DP training by analyzing the per-iteration loss improvement. We make a key observation that DP optimizers' performance degradation can be significantly mitigated by the use of limited public data, which leads to a novel DP continual pre-training strategy. Empirically, using only 10\% of public data, our strategy can achieve DP accuracy of 41.5\% on ImageNet-21k (with $\epsilon=8$), as well as non-DP accuracy of 55.7\% and and 60.0\% on downstream tasks Places365 and iNaturalist-2021, respectively, on par with state-of-the-art standard pre-training and substantially outperforming existing DP pre-trained models.

Based on the remarkable achievements of pre-trained language models in abstractive summarization, the copying mechanism has proved helpful by improving the factuality, stability, and overall performance. This work proposes PROM, a new PhRase-level cOpying Mechanism that enhances attention on n-grams, which can be applied to zero-shot summarization with pre-training. PROM adds an indicator layer to explicitly pick up tokens in n-gram that can be copied from the source, and calculates an auxiliary loss for the copying prediction. Empirical studies show that PROM makes significant improvements in fine-tuning on benchmarks. In zero-shot setting, PROM is utilized in the self-supervised pre-training on raw corpora and provides new general baselines on a wide range of summarization datasets. Further analysis shows that PROM performs more reasonable copying and contributes to faithfulness.

With the rapid development of recommender systems, there is increasing side information that can be employed to improve the recommendation performance. Specially, we focus on the utilization of the associated \emph{textual data} of items (eg product title) and study how text features can be effectively fused with ID features in sequential recommendation. However, there exists distinct data characteristics for the two kinds of item features, making a direct fusion method (eg adding text and ID embeddings as item representation) become less effective. To address this issue, we propose a novel {\ul \emph{Te}}xt-I{\ul \emph{D}} semantic fusion approach for sequential {\ul \emph{Rec}}ommendation, namely \textbf{\our}. The core idea of our approach is to conduct a sequence-level semantic fusion approach by better integrating global contexts. The key strategy lies in that we transform the text embeddings and ID embeddings by Fourier Transform from \emph{time domain} to \emph{frequency domain}. In the frequency domain, the global sequential characteristics of the original sequences are inherently aggregated into the transformed representations, so that we can employ simple multiplicative operations to effectively fuse the two kinds of item features. Our fusion approach can be proved to have the same effects of contextual convolution, so as to achieving sequence-level semantic fusion. In order to further improve the fusion performance, we propose to enhance the discriminability of the text embeddings from the text encoder, by adaptively injecting positional information via a mixture-of-experts~(MoE) modulation method. Our implementation is available at this repository: \textcolor{magenta}{\url{//github.com/RUCAIBox/TedRec}}.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司