亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As all software, blockchain nodes are exposed to faults in their underlying execution stack. Unstable execution environments can disrupt the availability of blockchain nodes interfaces, resulting in downtime for users. This paper introduces the concept of N-version Blockchain nodes. This new type of node relies on simultaneous execution of different implementations of the same blockchain protocol, in the line of Avizienis' N-version programming vision. We design and implement an N-version blockchain node prototype in the context of Ethereum, called N-ETH. We show that N-ETH is able to mitigate the effects of unstable execution environments and significantly enhance availability under environment faults. To simulate unstable execution environments, we perform fault injection at the system-call level. Our results show that existing Ethereum node implementations behave asymmetrically under identical instability scenarios. N-ETH leverages this asymmetric behavior available in the diverse implementations of Ethereum nodes to provide increased availability, even under our most aggressive fault-injection strategies. We are the first to validate the relevance of N-version design in the domain of blockchain infrastructure. From an industrial perspective, our results are of utmost importance for businesses operating blockchain nodes, including Google, ConsenSys, and many other major blockchain companies.

相關內容

 區塊鏈(Blockchain)是由節點參與的分布式數據庫系統,它的特點是不可更改,不可偽造,也可以將其理解為賬簿系統(ledger)。它是比特幣的一個重要概念,完整比特幣區塊鏈的副本,記錄了其代幣(token)的每一筆交易。通過這些信息,我們可以找到每一個地址,在歷史上任何一點所擁有的價值。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Training machine learning and statistical models often involves optimizing a data-driven risk criterion. The risk is usually computed with respect to the empirical data distribution, but this may result in poor and unstable out-of-sample performance due to distributional uncertainty. In the spirit of distributionally robust optimization, we propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet Process) theory and recent decision-theoretic models of smooth ambiguity-averse preferences. First, we highlight novel connections with standard regularized empirical risk minimization techniques, among which Ridge and LASSO regressions. Then, we theoretically demonstrate the existence of favorable finite-sample and asymptotic statistical guarantees on the performance of the robust optimization procedure. For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet Process representations. We also show that the smoothness of the criterion naturally leads to standard gradient-based numerical optimization. Finally, we provide insights into the workings of our method by applying it to high-dimensional sparse linear regression, binary classification, and robust location parameter estimation tasks.

Multi-Robot Task Allocation (MRTA) is a problem that arises in many application domains including package delivery, warehouse robotics, and healthcare. In this work, we consider the problem of MRTA for a dynamic stream of tasks with task deadlines and capacitated agents (capacity for more than one simultaneous task). Previous work commonly focuses on the static case, uses specialized algorithms for restrictive task specifications, or lacks guarantees. We propose an approach to Dynamic MRTA for capacitated robots that is based on Satisfiability Modulo Theories (SMT) solving and addresses these concerns. We show our approach is both sound and complete, and that the SMT encoding is general, enabling extension to a broader class of task specifications. We show how to leverage the incremental solving capabilities of SMT solvers, keeping learned information when allocating new tasks arriving online, and to solve non-incrementally, which we provide runtime comparisons of. Additionally, we provide an algorithm to start with a smaller but potentially incomplete encoding that can iteratively be adjusted to the complete encoding. We evaluate our method on a parameterized set of benchmarks encoding multi-robot delivery created from a graph abstraction of a hospital-like environment. The effectiveness of our approach is demonstrated using a range of encodings, including quantifier-free theories of uninterpreted functions and linear or bitvector arithmetic across multiple solvers.

Histo-genomic multi-modal methods have recently emerged as a powerful paradigm, demonstrating significant potential for improving cancer prognosis. However, genome sequencing, unlike histopathology imaging, is still not widely accessible in underdeveloped regions, limiting the application of these multi-modal approaches in clinical settings. To address this, we propose a novel Genome-informed Hyper-Attention Network, termed G-HANet, which is capable of effectively distilling the histo-genomic knowledge during training to elevate uni-modal whole slide image (WSI)-based inference for the first time. Compared with traditional knowledge distillation methods (i.e., teacher-student architecture) in other tasks, our end-to-end model is superior in terms of training efficiency and learning cross-modal interactions. Specifically, the network comprises the cross-modal associating branch (CAB) and hyper-attention survival branch (HSB). Through the genomic data reconstruction from WSIs, CAB effectively distills the associations between functional genotypes and morphological phenotypes and offers insights into the gene expression profiles in the feature space. Subsequently, HSB leverages the distilled histo-genomic associations as well as the generated morphology-based weights to achieve the hyper-attention modeling of the patients from both histopathology and genomic perspectives to improve cancer prognosis. Extensive experiments are conducted on five TCGA benchmarking datasets and the results demonstrate that G-HANet significantly outperforms the state-of-the-art WSI-based methods and achieves competitive performance with genome-based and multi-modal methods. G-HANet is expected to be explored as a useful tool by the research community to address the current bottleneck of insufficient histo-genomic data pairing in the context of cancer prognosis and precision oncology.

Utilizing unmanned aerial vehicles (UAVs) with edge server to assist terrestrial mobile edge computing (MEC) has attracted tremendous attention. Nevertheless, state-of-the-art schemes based on deterministic optimizations or single-objective reinforcement learning (RL) cannot reduce the backlog of task bits and simultaneously improve energy efficiency in highly dynamic network environments, where the design problem amounts to a sequential decision-making problem. In order to address the aforementioned problems, as well as the curses of dimensionality introduced by the growing number of terrestrial terrestrial users, this paper proposes a distributed multi-objective (MO) dynamic trajectory planning and offloading scheduling scheme, integrated with MORL and the kernel method. The design of n-step return is also applied to average fluctuations in the backlog. Numerical results reveal that the n-step return can benefit the proposed kernel-based approach, achieving significant improvement in the long-term average backlog performance, compared to the conventional 1-step return design. Due to such design and the kernel-based neural network, to which decision-making features can be continuously added, the kernel-based approach can outperform the approach based on fully-connected deep neural network, yielding improvement in energy consumption and the backlog performance, as well as a significant reduction in decision-making and online learning time.

We introduce a new class of hardware trojans called interrupt-resilient trojans (IRTs). Our work is motivated by the observation that hardware trojan attacks on CPUs, even under favorable attack scenarios (e.g., an attacker with local system access), are affected by unpredictability due to non-deterministic context switching events. As we confirm experimentally, these events can lead to race conditions between trigger signals and the CPU events targeted by the trojan payloads (e.g., a CPU memory access), thus affecting the reliability of the attacks. Our work shows that interrupt-resilient trojans can successfully address the problem of non-deterministic triggering in CPUs, thereby providing high reliability guarantees in the implementation of sophisticated hardware trojan attacks. Specifically, we successfully utilize IRTs in different attack scenarios against a Linux-capable CPU design and showcase its resilience against context-switching events. More importantly, we show that our design allows for seamless integration during fabrication stage attacks.We evaluate different strategies for the implementation of our attacks on a tape-out ready high-speed RISC-V microarchitecture in a 28nm commercial technology process and successfully implement them with an average overhead delay of only 20 picoseconds, while leaving the sign-off characteristics of the layout intact. In doing so, we challenge the common wisdom regarding the low flexibility of late supply chain stages (e.g., fabrication) for the insertion of powerful trojans. To promote further research on microprocessor trojans, we open-source our designs and provide the accompanying supporting software logic.

Recently, centralized receding horizon online multi-robot coverage path planning algorithms have shown remarkable scalability in thoroughly exploring large, complex, unknown workspaces with many robots. In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute, and subsequently, when the robots with new or outstanding paths execute to reach respective goals, path planning does not occur for those robots yet to get new paths, leading to wastage of both the robotic and the computation resources. As a remedy, we propose a centralized algorithm that is not horizon-based. It plans paths at any time for a subset of robots with no paths, i.e., who have reached their previously assigned goals, while the rest execute their outstanding paths, thereby enabling concurrent planning and execution. We formally prove that the proposed algorithm ensures complete coverage of an unknown workspace and analyze its time complexity. To demonstrate scalability, we evaluate our algorithm to cover eight large $2$D grid benchmark workspaces with up to 512 aerial and ground robots, respectively. A comparison with a state-of-the-art horizon-based algorithm shows its superiority in completing the coverage with up to 1.6x speedup. For validation, we perform ROS + Gazebo simulations in six 2D grid benchmark workspaces with 10 quadcopters and TurtleBots, respectively. We also successfully conducted one outdoor experiment with three quadcopters and one indoor with two TurtleBots.

Wireless data communications are always facing the risk of eavesdropping and interception. Conventional protection solutions which are based on encryption may not always be practical as is the case for wireless IoT networks or may soon become ineffective against quantum computers. In this regard, Physical Layer Security (PLS) presents a promising approach to secure wireless communications through the exploitation of the physical properties of the wireless channel. Cooperative Friendly Jamming (CFJ) is among the PLS techniques that have received attention in recent years. However, finding an optimal transmit power allocation that results in the highest secrecy is a complex problem that becomes more difficult to address as the size of the wireless network increases. In this paper, we propose an optimization approach to achieve CFJ in large Wi-Fi networks by using a Reinforcement Learning Algorithm. Obtained results show that our optimization approach offers better secrecy results and becomes more effective as the network size and the density of Wi-Fi access points increase.

We present the CheckMate tool for automated verification of game-theoretic security properties, with application to blockchain protocols. CheckMate applies automated reasoning techniques to determine whether a game-theoretic protocol model is game-theoretically secure, that is, Byzantine fault tolerant and incentive compatible. We describe CheckMate's input format and its various components, modes, and output. CheckMate is evaluated on 14 benchmarks, including models of decentralized protocols, board games, and game-theoretic examples.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司