In this paper, we discuss the second-order finite element method (FEM) and finite difference method (FDM) for numerically solving elliptic cross-interface problems characterized by vertical and horizontal straight lines, piecewise constant coefficients, two homogeneous jump conditions, continuous source terms, and Dirichlet boundary conditions. For brevity, we consider a 2D simplified version where the intersection points of the interface lines coincide with grid points in uniform Cartesian grids. Our findings reveal interesting and important results: (1) When the coefficient functions exhibit either high jumps with low-frequency oscillations or low jumps with high-frequency oscillations, the finite element method and finite difference method yield similar numerical solutions. (2) However, when the interface problems involve high-contrast and high-frequency coefficient functions, the numerical solutions obtained from the finite element and finite difference methods differ significantly. Given that the widely studied SPE10 benchmark problem (see //www.spe.org/web/csp/datasets/set02.htm) typically involves high-contrast and high-frequency permeability due to varying geological layers in porous media, this phenomenon warrants attention. Furthermore, this observation is particularly important for developing multiscale methods, as reference solutions for these methods are usually obtained using the standard second-order finite element method with a fine mesh, and analytical solutions are not available. We provide sufficient details to enable replication of our numerical results, and the implementation is straightforward. This simplicity ensures that readers can easily confirm the validity of our findings.
In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The proposed approach is built on the deterministic variant of the Information Bottleneck algorithm, designed to optimally compress data while preserving its relevant structural information. We evaluate the performance of our method against four well-established clustering techniques for mixed-type data -- KAMILA, K-Prototypes, Factor Analysis for Mixed Data with K-Means, and Partitioning Around Medoids using Gower's dissimilarity -- using both simulated and real-world datasets. The results highlight that the proposed approach offers a competitive alternative to traditional clustering techniques, particularly under specific conditions where heterogeneity in data poses significant challenges.
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of ``slow thinking" into multimodal large language models (MLLMs). Contrary to existing methods that rely on direct or fast thinking, our key idea is to construct long chains of thought (CoT) consisting of atomic actions in a step-by-step manner, guiding MLLMs to perform complex reasoning. To this end, we design a novel AtomThink framework composed of three key modules: (i) a CoT annotation engine that automatically generates high-quality CoT annotations to address the lack of high-quality visual mathematical data; (ii) an atomic step fine-tuning strategy that jointly optimizes an MLLM and a policy reward model (PRM) for step-wise reasoning; and (iii) four different search strategies that can be applied with the PRM to complete reasoning. Additionally, we propose AtomMATH, a large-scale multimodal dataset of long CoTs, and an atomic capability evaluation metric for mathematical tasks. Extensive experimental results show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving approximately 50\% relative accuracy gains on MathVista and 120\% on MathVerse. To support the advancement of multimodal slow-thinking models, we will make our code and dataset publicly available on //github.com/Quinn777/AtomThink.
In this paper, we develop a low-rank method with high-order temporal accuracy using spectral deferred correction (SDC) to compute linear matrix differential equations. In [1], a low rank numerical method is proposed to correct the modeling error of the basis update and the Galerkin (BUG) method, which is a computational approach for DLRA. This method (merge-BUG/mBUG method) has been demonstrated to be first order convergent for general advection-diffusion problems. In this paper, we explore using SDC to elevate the convergence order of the mBUG method. In SDC, we start by computing a first-order solution by mBUG, and then perform successive updates by computing low-rank solutions to the Picard integral equation. Rather than a straightforward application of SDC with mBUG, we propose two aspects to improve computational efficiency. The first is to reduce the intermediate numerical rank by detailed analysis of dependence of truncation parameter on the correction levels. The second aspect is a careful choice of subspaces in the successive correction to avoid inverting large linear systems (from the K- and L-steps in BUG). We prove that the resulting scheme is high-order accurate for the Lipschitz continuous and bounded dynamical system. We consider numerical rank control in our framework by comparing two low-rank truncation strategies: the hard truncation strategy by truncated singular value decomposition and the soft truncation strategy by soft thresholding. We demonstrate numerically that soft thresholding offers better rank control in particular for higher-order schemes for weakly (or non-)dissipative problems.
This work proposes a hybrid model- and data-based scheme for fault detection, isolation, and estimation (FDIE) for a class of wafer handler (WH) robots. The proposed hybrid scheme consists of: 1) a linear filter that simultaneously estimates system states and fault-induced signals from sensing and actuation data; and 2) a data-driven classifier, in the form of a support vector machine (SVM), that detects and isolates the fault type using estimates generated by the filter. We demonstrate the effectiveness of the scheme for two critical fault types for WH robots used in the semiconductor industry: broken-belt in the lower arm of the WH robot (an abrupt fault) and tilt in the robot arms (an incipient fault). We derive explicit models of the robot motion dynamics induced by these faults and test the diagnostics scheme in a realistic simulation-based case study. These case study results demonstrate that the proposed hybrid FDIE scheme achieves superior performance compared to purely data-driven methods.
In this paper, we present a novel diffusion model-based monaural speech enhancement method. Our approach incorporates the separate estimation of speech spectra's magnitude and phase in two diffusion networks. Throughout the diffusion process, noise clips from real-world noise interferences are added gradually to the clean speech spectra and a noise-aware reverse process is proposed to learn how to generate both clean speech spectra and noise spectra. Furthermore, to fully leverage the intrinsic relationship between magnitude and phase, we introduce a complex-cycle-consistent (CCC) mechanism that uses the estimated magnitude to map the phase, and vice versa. We implement this algorithm within a phase-aware speech enhancement diffusion model (SEDM). We conduct extensive experiments on public datasets to demonstrate the effectiveness of our method, highlighting the significant benefits of exploiting the intrinsic relationship between phase and magnitude information to enhance speech. The comparison to conventional diffusion models demonstrates the superiority of SEDM.
In this paper, we propose a bilevel joint unsupervised and supervised training (BL-JUST) framework for automatic speech recognition. Compared to the conventional pre-training and fine-tuning strategy which is a disconnected two-stage process, BL-JUST tries to optimize an acoustic model such that it simultaneously minimizes both the unsupervised and supervised loss functions. Because BL-JUST seeks matched local optima of both loss functions, acoustic representations learned by the acoustic model strike a good balance between being generic and task-specific. We solve the BL-JUST problem using penalty-based bilevel gradient descent and evaluate the trained deep neural network acoustic models on various datasets with a variety of architectures and loss functions. We show that BL-JUST can outperform the widely-used pre-training and fine-tuning strategy and some other popular semi-supervised techniques.
We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.
We present a new method for obtaining norm bounds for random matrices, where each entry is a low-degree polynomial in an underlying set of independent real-valued random variables. Such matrices arise in a variety of settings in the analysis of spectral and optimization algorithms, which require understanding the spectrum of a random matrix depending on data obtained as independent samples. Using ideas of decoupling and linearization from analysis, we show a simple way of expressing norm bounds for such matrices, in terms of matrices of lower-degree polynomials corresponding to derivatives. Iterating this method gives a simple bound with an elementary proof, which can recover many bounds previously required more involved techniques.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.