With the rapid development of large language models (LLMs), their applications have expanded into diverse fields, such as code assistance. However, the substantial size of LLMs makes their training highly resource- and time-intensive, rendering frequent retraining or updates impractical. Consequently, time-sensitive data can become outdated, potentially misleading LLMs in time-aware tasks. For example, new vulnerabilities are discovered in various programs every day. Without updating their knowledge, LLMs may inadvertently generate code that includes these newly discovered vulnerabilities. Current strategies, such as prompt engineering and fine-tuning, do not effectively address this issue. To address this issue, we propose solution, named APILOT, which maintains a realtime, quickly updatable dataset of outdated APIs. Additionally, APILOT utilizes an augmented generation method that leverages this dataset to navigate LLMs in generating secure, version-aware code. We conducted a comprehensive evaluation to measure the effectiveness of APILOT in reducing the incidence of outdated API recommendations across seven different state-of-the-art LLMs. The evaluation results indicate that APILOT can reduce outdated code recommendations by 89.42% on average with limited performance overhead. Interestingly, while enhancing security, APILOT also improves the usability of the code generated by LLMs, showing an average increase of 27.54% in usability. This underscores APILOT's dual capability to enhance both the safety and practical utility of code suggestions in contemporary software development environments.
Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the "why" by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of "how", we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area. We also maintain a GitHub repository to continually keep track of the relevant papers and resources in this rising area at //github.com/quchangle1/LLM-Tool-Survey.
The rise of large language models (LLMs) has significantly transformed both the construction and application of information retrieval (IR) systems. However, current interactions between IR systems and LLMs remain limited, with LLMs merely serving as part of components within IR systems, and IR systems being constructed independently of LLMs. This separated architecture restricts knowledge sharing and deep collaboration between them. In this paper, we introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture. Self-Retrieval unifies all essential IR functions within a single LLM, leveraging the inherent capabilities of LLMs throughout the IR process. Specifically, Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking. Experimental results demonstrate that Self-Retrieval not only outperforms existing retrieval approaches by a significant margin, but also substantially enhances the performance of LLM-driven downstream applications like retrieval-augmented generation.
The development of large language models (LLM) has revolutionized various fields and is anticipated to drive the advancement of autonomous systems. In the context of autonomous optical networks, creating a high-level cognitive agent in the control layer remains a challenge. However, LLM is primarily developed for natural language processing tasks, rendering them less effective in predicting the physical dynamics of optical communications. Moreover, optical networks demand rigorous stability, where direct deployment of strategies generated from LLM poses safety concerns. In this paper, a digital twin (DT)-enhanced LLM scheme is proposed to facilitate autonomous optical networks. By leveraging monitoring data and advanced models, the DT of optical networks can accurately characterize their physical dynamics, furnishing LLMs with dynamic-updated information for reliable decision-making. Prior to deployment, the generated strategies from LLM can be pre-verified in the DT platform, which also provides feedback to the LLM for further refinement of strategies. The synergistic interplay between DT and LLM for autonomous optical networks is demonstrated through three scenarios: performance optimization under dynamic loadings in an experimental C+L-band long-haul transmission link, protection switching for device upgrading in a field-deployed six-node mesh network, and performance recovery after fiber cuts in a field-deployed C+L-band transmission link.
Recent advances in large language models (LLMs) have demonstrated their potential in handling complex reasoning tasks, which are usually achieved by constructing a thought chain to guide the model to solve the problem with multi-step thinking. However, existing methods often remain confined to previously explored solution spaces and thus overlook the critical blind spot within LLMs' cognitive range. To address these issues, we design the Thought Space Explorer (TSE), a novel framework to expand and optimize thought structures to guide LLMs to explore their blind spots of thinking. By generating new reasoning steps and branches based on the original thought structure with various designed strategies, TSE broadens the thought space and alleviates the impact of blind spots for LLM reasoning. Experimental results on multiple levels of reasoning tasks demonstrate the efficacy of TSE. We also conduct extensive analysis to understand how structured and expansive thought can contribute to unleashing the potential of LLM reasoning capabilities.
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from \textit{capability} to \textit{availability}, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce \textbf{BitStack}, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at //github.com/xinghaow99/BitStack.
The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 //huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 //github.com/cisnlp/GlotCC.
The remarkable reasoning and code generation capabilities of large language models (LLMs) have spurred significant interest in applying LLMs to enable task automation in digital chip design. In particular, recent work has investigated early ideas of applying these models to formal verification (FV), an approach to verifying hardware implementations that can provide strong guarantees of confidence but demands significant amounts of human effort. While the value of LLM-driven automation is evident, our understanding of model performance, however, has been hindered by the lack of holistic evaluation. In response, we present FVEval, the first comprehensive benchmark and evaluation framework for characterizing LLM performance in tasks pertaining to FV. The benchmark consists of three sub-tasks that measure LLM capabilities at different levels: from the generation of SystemVerilog assertions (SVAs) given natural language descriptions to reasoning about the design RTL and suggesting assertions directly without additional human input. As test instances, we present both collections of expert-written verification collateral and methodologies to scalably generate synthetic examples aligned with industrial FV workflows. A wide range of existing LLMs, both proprietary and open-source, are evaluated against FVEval, based on which we investigate where today's LLMs stand and how we might further enable their application toward improving productivity in digital FV. Our benchmark and evaluation code is available at \url{//github.com/NVlabs/FVEval}.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.