Undefined behavior in C often causes devastating security vulnerabilities. One practical mitigation is compartmentalization, which allows developers to structure large programs into mutually distrustful compartments with clearly specified privileges and interactions. In this paper we introduce SECOMP, a compiler for compartmentalized C code that comes with machine-checked proofs guaranteeing that the scope of undefined behavior is restricted to the compartments that encounter it and become dynamically compromised. These guarantees are formalized as the preservation of safety properties against adversarial contexts, a secure compilation criterion similar to full abstraction, and this is the first time such a strong criterion is proven for a mainstream programming language. To achieve this we extend the languages of the CompCert verified C compiler with isolated compartments that can only interact via procedure calls and returns, as specified by cross-compartment interfaces. We adapt the passes and optimizations of CompCert as well as their correctness proofs to this compartment-aware setting. We then use compiler correctness as an ingredient in a larger secure compilation proof that involves several proof engineering novelties, needed to scale formally secure compilation up to a C compiler.
Penetration testing, a crucial industrial practice for ensuring system security, has traditionally resisted automation due to the extensive expertise required by human professionals. Large Language Models (LLMs) have shown significant advancements in various domains, and their emergent abilities suggest their potential to revolutionize industries. In this research, we evaluate the performance of LLMs on real-world penetration testing tasks using a robust benchmark created from test machines with platforms. Our findings reveal that while LLMs demonstrate proficiency in specific sub-tasks within the penetration testing process, such as using testing tools, interpreting outputs, and proposing subsequent actions, they also encounter difficulties maintaining an integrated understanding of the overall testing scenario. In response to these insights, we introduce PentestGPT, an LLM-empowered automatic penetration testing tool that leverages the abundant domain knowledge inherent in LLMs. PentestGPT is meticulously designed with three self-interacting modules, each addressing individual sub-tasks of penetration testing, to mitigate the challenges related to context loss. Our evaluation shows that PentestGPT not only outperforms LLMs with a task-completion increase of 228.6\% compared to the \gptthree model among the benchmark targets but also proves effective in tackling real-world penetration testing challenges. Having been open-sourced on GitHub, PentestGPT has garnered over 4,700 stars and fostered active community engagement, attesting to its value and impact in both the academic and industrial spheres.
Conversational dense retrieval has shown to be effective in conversational search. However, a major limitation of conversational dense retrieval is their lack of interpretability, hindering intuitive understanding of model behaviors for targeted improvements. This paper presents CONVINV, a simple yet effective approach to shed light on interpretable conversational dense retrieval models. CONVINV transforms opaque conversational session embeddings into explicitly interpretable text while faithfully maintaining their original retrieval performance as much as possible. Such transformation is achieved by training a recently proposed Vec2Text model based on the ad-hoc query encoder, leveraging the fact that the session and query embeddings share the same space in existing conversational dense retrieval. To further enhance interpretability, we propose to incorporate external interpretable query rewrites into the transformation process. Extensive evaluations on three conversational search benchmarks demonstrate that CONVINV can yield more interpretable text and faithfully preserve original retrieval performance than baselines. Our work connects opaque session embeddings with transparent query rewriting, paving the way toward trustworthy conversational search.
The field of AI alignment aims to steer AI systems toward human goals, preferences, and ethical principles. Its contributions have been instrumental for improving the output quality, safety, and trustworthiness of today's AI models. This perspective article draws attention to a fundamental challenge inherent in all AI alignment endeavors, which we term the "AI alignment paradox": The better we align AI models with our values, the easier we make it for adversaries to misalign the models. We illustrate the paradox by sketching three concrete example incarnations for the case of language models, each corresponding to a distinct way in which adversaries can exploit the paradox. With AI's increasing real-world impact, it is imperative that a broad community of researchers be aware of the AI alignment paradox and work to find ways to break out of it, in order to ensure the beneficial use of AI for the good of humanity.
Access control is the enforcement of the authorization policy, which defines subjects, resources, and access rights. Graph-structured data requires advanced, flexible, and fine-grained access control due to its complex structure as sequences of alternating vertices and edges. Several research works focus on protecting property graph-structured data, enforcing fine-grained access control, and proving the feasibility and applicability of their concept. However, they differ conceptually and technically. We select works from our systematic literature review on authorization and access control for different database models in addition to recent ones. Based on defined criteria, we exclude research works with different objectives, such as no protection of graph-structured data, graph models other than the property graph, coarse-grained access control approaches, or no application in a graph datastore (i.e., no proof-of-concept implementation). The latest version of the remaining works are discussed in detail in terms of their access control approach as well as authorization policy definition and enforcement. Finally, we analyze the strengths and limitations of the selected works and provide a comparison with respect to different aspects, including the base access control model, open/closed policy, negative permission support, and datastore-independent enforcement.
In the evolving landscape of human-centered AI, fostering a synergistic relationship between humans and AI agents in decision-making processes stands as a paramount challenge. This work considers a problem setup where an intelligent agent comprising a neural network-based prediction component and a deep reinforcement learning component provides advice to a human decision-maker in complex repeated decision-making environments. Whether the human decision-maker would follow the agent's advice depends on their beliefs and trust in the agent and on their understanding of the advice itself. To this end, we developed an approach named ADESSE to generate explanations about the adviser agent to improve human trust and decision-making. Computational experiments on a range of environments with varying model sizes demonstrate the applicability and scalability of ADESSE. Furthermore, an interactive game-based user study shows that participants were significantly more satisfied, achieved a higher reward in the game, and took less time to select an action when presented with explanations generated by ADESSE. These findings illuminate the critical role of tailored, human-centered explanations in AI-assisted decision-making.
In the face of uncertainty, the ability to *seek information* is of fundamental importance. In many practical applications, such as medical diagnosis and troubleshooting, the information needed to solve the task is not initially given and has to be actively sought by asking follow-up questions (for example, a doctor asking a patient for more details about their symptoms). In this work, we introduce Uncertainty of Thoughts (UoT), an algorithm to augment large language models with the ability to actively seek information by asking effective questions. UoT combines 1) an *uncertainty-aware simulation approach* which enables the model to simulate possible future scenarios and how likely they are to occur, 2) *uncertainty-based rewards* motivated by information gain which incentivizes the model to seek information, and 3) a *reward propagation scheme* to select the optimal question to ask in a way that maximizes the expected reward. In experiments on medical diagnosis, troubleshooting, and the `20 Questions` game, UoT achieves an average performance improvement of 38.1% in the rate of successful task completion across multiple LLMs compared with direct prompting and also improves efficiency (i.e., the number of questions needed to complete the task). Our code has been released [here](//github.com/zhiyuanhubj/UoT)
Most prior safety research of large language models (LLMs) has focused on enhancing the alignment of LLMs to better suit the safety requirements of humans. However, internalizing such safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness. To overcome such challenges, a modular approach employing a smaller LLM to detect harmful user queries is regarded as a convenient solution in designing LLM-based system with safety requirements. In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation. We introduce our safety requirements and the taxonomy of harmfulness categories, and then propose a multi-task learning mechanism fusing the two tasks into a single model. We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.