This paper addresses the problem of constrained multi-objective optimization over black-box objective functions with practitioner-specified preferences over the objectives when a large fraction of the input space is infeasible (i.e., violates constraints). This problem arises in many engineering design problems including analog circuits and electric power system design. Our overall goal is to approximate the optimal Pareto set over the small fraction of feasible input designs. The key challenges include the huge size of the design space, multiple objectives and large number of constraints, and the small fraction of feasible input designs which can be identified only after performing expensive simulations. We propose a novel and efficient preference-aware constrained multi-objective Bayesian optimization approach referred to as PAC-MOO to address these challenges. The key idea is to learn surrogate models for both output objectives and constraints, and select the candidate input for evaluation in each iteration that maximizes the information gained about the optimal constrained Pareto front while factoring in the preferences over objectives. Our experiments on two real-world analog circuit design optimization problems demonstrate the efficacy of PAC-MOO over prior methods.
Permitting multiple materials within a topology optimization setting increases the search space of the technique, which facilitates obtaining high-performing and efficient optimized designs. Structures with multiple materials involving fluidic pressure loads find various applications. However, dealing with the design-dependent nature of the pressure loads is challenging in topology optimization that gets even more pronounced with a multi-material framework. This paper provides a density-based topology optimization method to design fluidic pressure loadbearing multi-material structures. The design domain is parameterized using hexagonal elements as they ensure nonsingular connectivity. Pressure modeling is performed using the Darcy law with a conceptualized drainage term. The flow coefficient of each element is determined using a smooth Heaviside function considering its solid and void states. The consistent nodal loads are determined using the standard finite element methods. Multiple materials is modeled using the extended SIMP scheme. Compliance minimization with volume constraints is performed to achieve optimized loadbearing structures. Few examples are presented to demonstrate the efficacy and versatility of the proposed approach. The optimized results contain the prescribed amount of different materials.
Nonlinear model predictive control (NMPC) solves a multivariate optimization problem to estimate the system's optimal control inputs in each control cycle. Such optimization is made more difficult by several factors, such as nonlinearities inherited in the system, highly coupled inputs, and various constraints related to the system's physical limitations. These factors make the optimization to be non-convex and hard to solve traditionally. Genetic algorithm (GA) is typically used extensively to tackle such optimization in several application domains because it does not involve differential calculation or gradient evaluation in its solution estimation. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for the applicability of the GA with systems that require fast response. This paper proposes an approach to accelerate the genetic optimization of NMPC by learning optimal search space size. The proposed approach trains a multivariate regression model to adaptively predict the best smallest search space in every control cycle. The estimated best smallest size of search space is fed to the GA to allow for searching the optimal control inputs within this search space. The proposed approach not only reduces the GA's computational time but also improves the chance of obtaining the optimal control inputs in each cycle. The proposed approach was evaluated on two nonlinear systems and compared with two other genetic-based NMPC approaches implemented on the GPU of a Nvidia Jetson TX2 embedded platform in a processor-in-the-loop (PIL) fashion. The results show that the proposed approach provides a 39-53\% reduction in computational time. Additionally, it increases the convergence percentage to the optimal control inputs within the cycle's time by 48-56\%, resulting in a significant performance enhancement. The source code is available on GitHub.
Backscatter communication (BackCom), one of the core technologies to realize zero-power communication, is expected to be a pivotal paradigm for the next generation of the Internet of Things (IoT). However, the "strong" direct link (DL) interference (DLI) is traditionally assumed to be harmful, and generally drowns out the "weak" backscattered signals accordingly, thus deteriorating the performance of BackCom. In contrast to the previous efforts to eliminate the DLI, in this paper, we exploit the constructive interference (CI), in which the DLI contributes to the backscattered signal. To be specific, our objective is to maximize the received signal power by jointly optimizing the receive beamforming vectors and tag selection factors, which is, however, non-convex and difficult to solve due to constraints on the Kullback-Leibler (KL) divergence. In order to solve this problem, we first decompose the original problem, and then propose two algorithms to solve the sub-problem with beamforming design via a change of variables and semi-definite programming (SDP) and a greedy algorithm to solve the sub-problem with tag selection. In order to gain insight into the CI, we consider a special case with the single-antenna reader to reveal the channel angle between the backscattering link (BL) and the DL, in which the DLI will become constructive. Simulation results show that significant performance gain can always be achieved in the proposed algorithms compared with the traditional algorithms without the DL in terms of the strength of the received signal. The derived constructive channel angle for the BackCom system with the single-antenna reader is also confirmed by simulation results.
Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.
Inclusion of contact in mechanical designs opens a large range of design possibilities, this includes classical designs with contact, such as gears, couplings, switches, clamps etc. However, incorporation of contact in topology optimization is challenging, as classical contact models are not readily applicable when the boundaries are not defined. This paper aims to address the limitations of contact in topology optimization by extending the third medium contact method for topology optimization problems with internal contact. When the objective is to maximize a given contact load for a specified displacement, instabilities may arise as an optimum is approached. In order to alleviate stability problems as well as provide robustness of the optimized designs, a tangent stiffness requirement is introduced to the design objective. To avoid a non-physical exploitation of the third medium in optimized designs, small features are penalized by evaluating the volume constraint on a dilated design. The present work incorporates well-established methods in topology optimization including Helmholtz PDE filtering, threshold projection, Solid Isotropic Material Interpolation with Penalization, and the Method of Moving Asymptotes. Three examples are used to illustrate how the approach exploits internal contact in the topology optimization of structures subjected to large deformations.
Distributed computing is known as an emerging and efficient technique to support various intelligent services, such as large-scale machine learning. However, privacy leakage and random delays from straggling servers pose significant challenges. To address these issues, coded computing, a promising solution that combines coding theory with distributed computing, recovers computation tasks with results from a subset of workers. In this paper, we propose the adaptive privacy-preserving coded computing (APCC) strategy, which can adaptively provide accurate or approximated results according to the form of computation functions, so as to suit diverse types of computation tasks. We prove that APCC achieves complete data privacy preservation and demonstrate its optimality in terms of encoding rate, defined as the ratio between the computation loads of tasks before and after encoding. To further alleviate the straggling effect and reduce delay, we integrate hierarchical task partitioning and task cancellation into the coding design of APCC. The corresponding partitioning problems are formulated as mixed-integer nonlinear programming (MINLP) problems with the objective of minimizing task completion delay. We propose a low-complexity maximum value descent (MVD) algorithm to optimally solve these problems. Simulation results show that APCC can reduce task completion delay by at least 42.9% compared to other state-of-the-art benchmarks.
We present a full implementation and simulation of a novel quantum reinforcement learning method. Our work is a detailed and formal proof of concept for how quantum algorithms can be used to solve reinforcement learning problems and shows that, given access to error-free, efficient quantum realizations of the agent and environment, quantum methods can yield provable improvements over classical Monte-Carlo based methods in terms of sample complexity. Our approach shows in detail how to combine amplitude estimation and Grover search into a policy evaluation and improvement scheme. We first develop quantum policy evaluation (QPE) which is quadratically more efficient compared to an analogous classical Monte Carlo estimation and is based on a quantum mechanical realization of a finite Markov decision process (MDP). Building on QPE, we derive a quantum policy iteration that repeatedly improves an initial policy using Grover search until the optimum is reached. Finally, we present an implementation of our algorithm for a two-armed bandit MDP which we then simulate.
Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.