亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A discrete time quantum walk is known to be the single-particle sector of a quantum cellular automaton. Searching in this mathematical framework has interested the community since a long time. However, most results consider spatial search on regular graphs. This work introduces a new quantum walk-based searching scheme, designed to search nodes or edges on arbitrary graphs. As byproduct, such new model allows to generalise quantum cellular automata, usually defined on regular grids, to quantum anonymous networks, allowing a new physics-like mathematical environment for distributed quantum computing.

相關內容

Dynamical low-rank approximation has become a valuable tool to perform an on-the-fly model order reduction for prohibitively large matrix differential equations. A core ingredient is the construction of integrators that are robust to the presence of small singular values and the resulting large time derivatives of the orthogonal factors in the low-rank matrix representation. Recently, the robust basis-update & Galerkin (BUG) class of integrators has been introduced. These methods require no steps that evolve the solution backward in time, often have favourable structure-preserving properties, and allow for parallel time-updates of the low-rank factors. The BUG framework is flexible enough to allow for adaptations to these and further requirements. However, the BUG methods presented so far have only first-order robust error bounds. This work proposes a second-order BUG integrator for dynamical low-rank approximation based on the midpoint rule. The integrator first performs a half-step with a first-order BUG integrator, followed by a Galerkin update with a suitably augmented basis. We prove a robust second-order error bound which in addition shows an improved dependence on the normal component of the vector field. These rigorous results are illustrated and complemented by a number of numerical experiments.

We propose a novel stochastic algorithm that randomly samples entire rows and columns of the matrix as a way to approximate an arbitrary matrix function using the power series expansion. This contrasts with existing Monte Carlo methods, which only work with one entry at a time, resulting in a significantly better convergence rate than the original approach. To assess the applicability of our method, we compute the subgraph centrality and total communicability of several large networks. In all benchmarks analyzed so far, the performance of our method was significantly superior to the competition, being able to scale up to 64 CPU cores with remarkable efficiency.

In many practical studies, learning directionality between a pair of variables is of great interest while notoriously hard when their underlying relation is nonlinear. This paper presents a method that examines asymmetry in exposure-outcome pairs when a priori assumptions about their relative ordering are unavailable. Our approach utilizes a framework of generative exposure mapping (GEM) to study asymmetric relations in continuous exposure-outcome pairs, through which we can capture distributional asymmetries with no prefixed variable ordering. We propose a coefficient of asymmetry to quantify relational asymmetry using Shannon's entropy analytics as well as statistical estimation and inference for such an estimand of directionality. Large-sample theoretical guarantees are established for cross-fitting inference techniques. The proposed methodology is extended to allow both measured confounders and contamination in outcome measurements, which is extensively evaluated through extensive simulation studies and real data applications.

Open sets are central to mathematics, especially analysis and topology, in ways few notions are. In most, if not all, computational approaches to mathematics, open sets are only studied indirectly via their 'codes' or 'representations'. In this paper, we study how hard it is to compute, given an arbitrary open set of reals, the most common representation, i.e. a countable set of open intervals. We work in Kleene's higher-order computability theory, which was historically based on the S1-S9 schemes and which now has an intuitive lambda calculus formulation due to the authors. We establish many computational equivalences between on one hand the 'structure' functional that converts open sets to the aforementioned representation, and on the other hand functionals arising from mainstream mathematics, like basic properties of semi-continuous functions, the Urysohn lemma, and the Tietze extension theorem. We also compare these functionals to known operations on regulated and bounded variation functions, and the Lebesgue measure restricted to closed sets. We obtain a number of natural computational equivalences for the latter involving theorems from mainstream mathematics.

A quantum walk is the quantum analogue of a random walk. While it is relatively well understood how quantum walks can speed up random walk hitting times, it is a long-standing open question to what extent quantum walks can speed up the spreading or mixing rate of random walks on graphs. In this expository paper, inspired by a blog post by Terence Tao, we describe a particular perspective on this question that derives quantum walks from the discrete wave equation on graphs. This yields a description of the quantum walk dynamics as simply applying a Chebyshev polynomial to the random walk transition matrix. This perspective decouples the problem from its quantum origin, and highlights connections to earlier (non-quantum) work and the use of Chebyshev polynomials in random walk theory as in the Varopoulos-Carne bound. We illustrate the approach by proving a weak limit of the quantum walk dynamics on the lattice. This gives a different proof of the quadratically improved spreading behavior of quantum walks on lattices.

Consistency models, which were proposed to mitigate the high computational overhead during the sampling phase of diffusion models, facilitate single-step sampling while attaining state-of-the-art empirical performance. When integrated into the training phase, consistency models attempt to train a sequence of consistency functions capable of mapping any point at any time step of the diffusion process to its starting point. Despite the empirical success, a comprehensive theoretical understanding of consistency training remains elusive. This paper takes a first step towards establishing theoretical underpinnings for consistency models. We demonstrate that, in order to generate samples within $\varepsilon$ proximity to the target in distribution (measured by some Wasserstein metric), it suffices for the number of steps in consistency learning to exceed the order of $d^{5/2}/\varepsilon$, with $d$ the data dimension. Our theory offers rigorous insights into the validity and efficacy of consistency models, illuminating their utility in downstream inference tasks.

We introduce a higher-dimensional "cubical" chain complex and apply it to the design of quantum locally testable codes. Our cubical chain complex can be constructed for any dimension $t$, and in a precise sense generalizes the Sipser-Spielman construction of expander codes (case $t=1$) and the constructions by Dinur et. al and Panteleev and Kalachev of a square complex (case $t$=2), which have been applied to the design of classical locally testable and quantum low-density parity check codes respectively. For $t=4$ our construction gives a family of quantum locally testable codes conditional on a conjecture about robustness of four-tuples of random linear maps. These codes have linear dimension, inverse poly-logarithmic relative distance and soundness, and polylogarithmic-size parity checks. Our complex can be built in a modular way from two ingredients. Firstly, the geometry (edges, faces, cubes, etc.) is provided by a set $G$ of size $N$, together with pairwise commuting sets of actions $A_1,\ldots,A_t$ on it. Secondly, the chain complex itself is obtained by associating local coefficient spaces based on codes, with each geometric object, and introducing local maps on those coefficient spaces. We bound the cycle and co-cycle expansion of the chain complex. The assumptions we need are two-fold: firstly, each Cayley graph $Cay(G,A_j)$ needs to be a good (spectral) expander, and secondly, the families of codes and their duals both need to satisfy a form of robustness (that generalizes the condition of agreement testability for pairs of codes). While the first assumption is easy to satisfy, it is currently not known if the second can be achieved.

The dynamic mode decomposition (DMD) is a simple and powerful data-driven modeling technique that is capable of revealing coherent spatiotemporal patterns from data. The method's linear algebra-based formulation additionally allows for a variety of optimizations and extensions that make the algorithm practical and viable for real-world data analysis. As a result, DMD has grown to become a leading method for dynamical system analysis across multiple scientific disciplines. PyDMD is a Python package that implements DMD and several of its major variants. In this work, we expand the PyDMD package to include a number of cutting-edge DMD methods and tools specifically designed to handle dynamics that are noisy, multiscale, parameterized, prohibitively high-dimensional, or even strongly nonlinear. We provide a complete overview of the features available in PyDMD as of version 1.0, along with a brief overview of the theory behind the DMD algorithm, information for developers, tips regarding practical DMD usage, and introductory coding examples. All code is available at //github.com/PyDMD/PyDMD .

We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

北京阿比特科技有限公司