亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of testing identity of a collection of unknown quantum states given sample access to this collection, each state appearing with some known probability. We show that for a collection of $d$-dimensional quantum states of cardinality $N$, the sample complexity is $O(\sqrt{N}d/\epsilon^2)$, {with a matching lower bound, up to a multiplicative constant}. The test is obtained by estimating the mean squared Hilbert-Schmidt distance between the states, thanks to a suitable generalization of the estimator of the Hilbert-Schmidt distance between two unknown states by B\u{a}descu, O'Donnell, and Wright (//dl.acm.org/doi/10.1145/3313276.3316344).

相關內容

In this paper, we consider an inverse space-dependent source problem for a time-fractional diffusion equation. To deal with the ill-posedness of the problem, we transform the problem into an optimal control problem with total variational (TV) regularization. In contrast to the classical Tikhonov model incorporating $L^2$ penalty terms, the inclusion of a TV term proves advantageous in reconstructing solutions that exhibit discontinuities or piecewise constancy. The control problem is approximated by a fully discrete scheme, and convergence results are provided within this framework. Furthermore, a lineraed primal-dual iterative algorithm is proposed to solve the discrete control model based on an equivalent saddle-point reformulation, and several numerical experiments are presented to demonstrate the efficiency of the algorithm.

Testing of hypotheses is a well studied topic in mathematical statistics. Recently, this issue has also been addressed in the context of Inverse Problems, where the quantity of interest is not directly accessible but only after the inversion of a (potentially) ill-posed operator. In this study, we propose a regularized approach to hypothesis testing in Inverse Problems in the sense that the underlying estimators (or test statistics) are allowed to be biased. Under mild source-condition type assumptions we derive a family of tests with prescribed level $\alpha$ and subsequently analyze how to choose the test with maximal power out of this family. As one major result we prove that regularized testing is always at least as good as (classical) unregularized testing. Furthermore, using tools from convex optimization, we provide an adaptive test by maximizing the power functional, which then outperforms previous unregularized tests in numerical simulations by several orders of magnitude.

Over the last decade, approximating functions in infinite dimensions from samples has gained increasing attention in computational science and engineering, especially in computational uncertainty quantification. This is primarily due to the relevance of functions that are solutions to parametric differential equations in various fields, e.g. chemistry, economics, engineering, and physics. While acquiring accurate and reliable approximations of such functions is inherently difficult, current benchmark methods exploit the fact that such functions often belong to certain classes of holomorphic functions to get algebraic convergence rates in infinite dimensions with respect to the number of (potentially adaptive) samples $m$. Our work focuses on providing theoretical approximation guarantees for the class of $(\boldsymbol{b},\varepsilon)$-holomorphic functions, demonstrating that these algebraic rates are the best possible for Banach-valued functions in infinite dimensions. We establish lower bounds using a reduction to a discrete problem in combination with the theory of $m$-widths, Gelfand widths and Kolmogorov widths. We study two cases, known and unknown anisotropy, in which the relative importance of the variables is known and unknown, respectively. A key conclusion of our paper is that in the latter setting, approximation from finite samples is impossible without some inherent ordering of the variables, even if the samples are chosen adaptively. Finally, in both cases, we demonstrate near-optimal, non-adaptive (random) sampling and recovery strategies which achieve close to same rates as the lower bounds.

We investigate the algebra and geometry of general interventions in discrete DAG models. To this end, we introduce a theory for modeling soft interventions in the more general family of staged tree models and develop the formalism to study these models as parametrized subvarieties of a product of probability simplices. We then consider the problem of finding their defining equations, and we derive a combinatorial criterion for identifying interventional staged tree models for which the defining ideal is toric. We apply these results to the class of discrete interventional DAG models and establish a criteria to determine when these models are toric varieties.

In this paper we show that using implicative algebras one can produce models of set theory generalizing Heyting/Boolean-valued models and realizability models of (I)ZF, both in intuitionistic and classical logic. This has as consequence that any topos which is obtained from a Set-based tripos as the result of the tripos-to-topos construction hosts a model of intuitionistic or classical set theory, provided a large enough strongly inaccessible cardinal exists.

In this study, we present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptical equations. We did not impose a shape-regularity mesh condition for the analysis. Therefore, anisotropic meshes can be used. The main contributions of this study include providing new proof of the consistency term. This enabled us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart--Thomas and Morley finite element spaces. Our results show optimal convergence rates and imply that the modified Morley FEM may be effective for errors.

Linear logic has provided new perspectives on proof-theory, denotational semantics and the study of programming languages. One of its main successes are proof-nets, canonical representations of proofs that lie at the intersection between logic and graph theory. In the case of the minimalist proof-system of multiplicative linear logic without units (MLL), these two aspects are completely fused: proof-nets for this system are graphs satisfying a correctness criterion that can be fully expressed in the language of graphs. For more expressive logical systems (containing logical constants, quantifiers and exponential modalities), this is not completely the case. The purely graphical approach of proof-nets deprives them of any sequential structure that is crucial to represent the order in which arguments are presented, which is necessary for these extensions. Rebuilding this order of presentation - sequentializing the graph - is thus a requirement for a graph to be logical. Presentations and study of the artifacts ensuring that sequentialization can be done, such as boxes or jumps, are an integral part of researches on linear logic. Jumps, extensively studied by Faggian and di Giamberardino, can express intermediate degrees of sequentialization between a sequent calculus proof and a fully desequentialized proof-net. We propose to analyze the logical strength of jumps by internalizing them in an extention of MLL where axioms on a specific formula, the jumping formula, introduce constrains on the possible sequentializations. The jumping formula needs to be treated non-linearly, which we do either axiomatically, or by embedding it in a very controlled fragment of multiplicative-exponential linear logic, uncovering the exponential logic of sequentialization.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司