Previous head avatar methods have primarily relied on fixed-shape scene primitives, lacking a balance between geometric topology, texture details, and computational efficiency. Some hybrid neural network methods (e.g., planes and voxels) gained advantages in fast rendering, but they all used axis-aligned mappings to extract features explicitly, leading to issues of axis-aligned bias and feature dilution. We present GaussianHead, which utilizes deformable 3D Gaussians as building blocks for the head avatars. We propose a novel methodology where the core Gaussians designated for rendering undergo dynamic diffusion before being mapped onto a factor plane to acquire canonical sub-factors. Through our factor blending strategy, the canonical features for the core Gaussians used in rendering are obtained. This approach deviates from the previous practice of utilizing axis-aligned mappings, especially improving the representation capability of subtle structures such as teeth, wrinkles, hair, and even facial pores. In comparison to state-of-the-art methods, our unique primitive selection and factor decomposition in GaussianHead deliver superior visual results while maintaining rendering performance (0.1 seconds per frame). Code will released for research.
As language models continue to scale in size and capability, they display an array of emerging behaviors, both beneficial and concerning. This heightens the need to control model behaviors. We hope to be able to control the personality traits of language models at the inference-time so as to have various character features, on top of which the requirements of different types of tasks can be met. Personality is a higher-level and more abstract behavioral representation for language models. We introduce ControlLM, which leverages differential activation patterns, derived from contrasting behavioral prompts in the model's latent space, to influence the model's personality traits at inference. This approach allows for the precise, real-time adjustment of model behavior. First, we demonstrate ControlLM's capacity to elicit diverse persona behaviors without any training, while precision control allows personality traits to closely match average human values. Subsequently, we showcase improved reasoning and question answering through selective amplification of beneficial attributes like conscientiousness and friendliness. We hope that this work will inspire research on controlling human-like behaviors of language models and provide insights for future research. Our code is publicly available at: //github.com/wengsyx/ControlLM.
Graph partitioning aims to divide a graph into disjoint subsets while optimizing a specific partitioning objective. The majority of formulations related to graph partitioning exhibit NP-hardness due to their combinatorial nature. Conventional methods, like approximation algorithms or heuristics, are designed for distinct partitioning objectives and fail to achieve generalization across other important partitioning objectives. Recently machine learning-based methods have been developed that learn directly from data. Further, these methods have a distinct advantage of utilizing node features that carry additional information. However, these methods assume differentiability of target partitioning objective functions and cannot generalize for an unknown number of partitions, i.e., they assume the number of partitions is provided in advance. In this study, we develop NeuroCUT with two key innovations over previous methodologies. First, by leveraging a reinforcement learning-based framework over node representations derived from a graph neural network and positional features, NeuroCUT can accommodate any optimization objective, even those with non-differentiable functions. Second, we decouple the parameter space and the partition count making NeuroCUT inductive to any unseen number of partition, which is provided at query time. Through empirical evaluation, we demonstrate that NeuroCUT excels in identifying high-quality partitions, showcases strong generalization across a wide spectrum of partitioning objectives, and exhibits strong generalization to unseen partition count.
Commercial-off-the-shelf (COTS) components are often preferred over custom Integrated Circuits (ICs) to achieve reduced system development time and cost, easy adoption of new technologies, and replaceability. Unfortunately, the integration of COTS components introduces serious security concerns. None of the entities in the COTS IC supply chain are trusted from a consumer's perspective, leading to a ''zero trust'' threat model. Any of these entities could introduce hidden malicious circuits or hardware Trojans within the component, allowing an attacker in the field to extract secret information (e.g., cryptographic keys) or cause a functional failure. Existing solutions to counter hardware Trojans are inapplicable in such a zero-trust scenario as they assume either the design house or the foundry to be trusted and consider the design to be available for either analysis or modification. In this work, we have proposed a software-oriented countermeasure to ensure the confidentiality of secret assets against hardware Trojans that can be seamlessly integrated in existing COTS microprocessors. The proposed solution does not require any supply chain entity to be trusted and does not require analysis or modification of the IC design. To protect secret assets in an untrusted microprocessor, the proposed method leverages the concept of residue number coding (RNC) to transform the software functions operating on the asset to be fully homomorphic. We have implemented the proposed solution to protect the secret key within the Advanced Encryption Standard (AES) program and presented a detailed security analysis. We also have developed a plugin for the LLVM compiler toolchain that automatically integrates the solution in AES. Finally, we compare the execution time overhead of the operations in the RNC-based technique with comparable homomorphic solutions and demonstrate significant improvement.
Current LLM alignment methods are readily broken through specifically crafted adversarial prompts. While crafting adversarial prompts using discrete optimization is highly effective, such attacks typically use more than 100,000 LLM calls. This high computational cost makes them unsuitable for, e.g., quantitative analyses and adversarial training. To remedy this, we revisit Projected Gradient Descent (PGD) on the continuously relaxed input prompt. Although previous attempts with ordinary gradient-based attacks largely failed, we show that carefully controlling the error introduced by the continuous relaxation tremendously boosts their efficacy. Our PGD for LLMs is up to one order of magnitude faster than state-of-the-art discrete optimization to achieve the same devastating attack results.
Effective DNA embedding remains crucial in genomic analysis, particularly in scenarios lacking labeled data for model fine-tuning, despite the significant advancements in genome foundation models. A prime example is metagenomics binning, a critical process in microbiome research that aims to group DNA sequences by their species from a complex mixture of DNA sequences derived from potentially thousands of distinct, often uncharacterized species. To fill the lack of effective DNA embedding models, we introduce DNABERT-S, a genome foundation model that specializes in creating species-aware DNA embeddings. To encourage effective embeddings to error-prone long-read DNA sequences, we introduce Manifold Instance Mixup (MI-Mix), a contrastive objective that mixes the hidden representations of DNA sequences at randomly selected layers and trains the model to recognize and differentiate these mixed proportions at the output layer. We further enhance it with the proposed Curriculum Contrastive Learning (C$^2$LR) strategy. Empirical results on 18 diverse datasets showed DNABERT-S's remarkable performance. It outperforms the top baseline's performance in 10-shot species classification with just a 2-shot training while doubling the Adjusted Rand Index (ARI) in species clustering and substantially increasing the number of correctly identified species in metagenomics binning. The code, data, and pre-trained model are publicly available at //github.com/Zhihan1996/DNABERT_S.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.