We propose a new algorithm for k-means clustering in a distributed setting, where the data is distributed across many machines, and a coordinator communicates with these machines to calculate the output clustering. Our algorithm guarantees a cost approximation factor and a number of communication rounds that depend only on the computational capacity of the coordinator. Moreover, the algorithm includes a built-in stopping mechanism, which allows it to use fewer communication rounds whenever possible. We show both theoretically and empirically that in many natural cases, indeed 1-4 rounds suffice. In comparison with the popular k-means|| algorithm, our approach allows exploiting a larger coordinator capacity to obtain a smaller number of rounds. Our experiments show that the k-means cost obtained by the proposed algorithm is usually better than the cost obtained by k-means||, even when the latter is allowed a larger number of rounds. Moreover, the machine running time in our approach is considerably smaller than that of k-means||. Code for running the algorithm and experiments is available at //github.com/selotape/distributed_k_means.
Consider words of length $n$. The set of all periods of a word of length $n$ is a subset of $\{0,1,2,\ldots,n-1\}$. However, any subset of $\{0,1,2,\ldots,n-1\}$ is not necessarily a valid set of periods. In a seminal paper in 1981, Guibas and Odlyzko have proposed to encode the set of periods of a word into an $n$ long binary string, called an autocorrelation, where a one at position $i$ denotes the period $i$. They considered the question of recognizing a valid period set, and also studied the number of valid period sets for length $n$, denoted $\kappa_n$. They conjectured that $\ln(\kappa_n)$ asymptotically converges to a constant times $\ln^2(n)$. If improved lower bounds for $\ln(\kappa_n)/\ln^2(n)$ were proposed in 2001, the question of a tight upper bound has remained opened since Guibas and Odlyzko's paper. Here, we exhibit an upper bound for this fraction, which implies its convergence and closes this long standing conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a generalization of autocorrelations which encodes the overlaps between two strings.
The heavy-tailed behavior of the generalized extreme-value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires, etc. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate-sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood-free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network-based method provides Generalized Extreme Value (GEV) distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000-year annual maximum temperature data from the Community Climate System Model version 3 (CCSM3) across North America for three atmospheric concentrations: 289 ppm $\mathrm{CO}_2$ (pre-industrial), 700 ppm $\mathrm{CO}_2$ (future conditions), and 1400 ppm $\mathrm{CO}_2$, and compare the results with those obtained using the maximum likelihood approach.
Signaling game problems investigate communication scenarios where encoder(s) and decoder(s) have misaligned objectives due to the fact that they either employ different cost functions or have inconsistent priors. This problem has been studied in the literature for scalar sources under various setups. In this paper, we consider multi-dimensional sources under quadratic criteria in the presence of a bias leading to a mismatch in the criteria, where we show that the generalization from the scalar setup is more than technical. We show that the Nash equilibrium solutions lead to structural richness due to the subtle geometric analysis the problem entails, with consequences in both system design, the presence of linear Nash equilibria, and an information theoretic problem formulation. We first provide a set of geometric conditions that must be satisfied in equilibrium considering any multi-dimensional source. Then, we consider independent and identically distributed sources and characterize necessary and sufficient conditions under which an informative linear Nash equilibrium exists. These conditions involve the bias vector that leads to misaligned costs. Depending on certain conditions related to the bias vector, the existence of linear Nash equilibria requires sources with a Gaussian or a symmetric density. Moreover, in the case of Gaussian sources, our results have a rate-distortion theoretic implication that achievable rates and distortions in the considered game theoretic setup can be obtained from its team theoretic counterpart.
This paper proposes $\chi^2$ goodness-of-fit tests for checking conditional distribution model's specifications. The method involves partitioning the sample into classes based on a cross-classification of the dependent and explanatory variables, resulting in a contingency table with expected frequencies that are independent of the parameters in the model and equal to the product of the marginals. Test statistics are computed using the trinity of tests, based on the likelihood of grouped data, to test whether the expected frequencies satisfy the model's restrictions. We also present a Chernoff-Lehman result that enables us to derive the asymptotic distribution of a Wald statistic using the efficient raw data estimator. The asymptotic distribution of the test statistics remains the same even when partitions are sample-dependent. An algorithm is developed to control the number of observations per cell. Monte Carlo experiments demonstrate the proposed tests' excellent size accuracy and good power properties.
We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts$\unicode{x2014}$such as envy-freeness up to one item (EF1) and minimax share (MMS)$\unicode{x2014}$to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement our theoretical results by experimentally analyzing the price of fairness on randomly generated graph structures.
We explore the features of two methods of stabilization, aggregation and supremizer methods, for reduced-order modeling of parametrized optimal control problems. In both methods, the reduced basis spaces are augmented to guarantee stability. For the aggregation method, the reduced basis approximation spaces for the state and adjoint variables are augmented in such a way that the spaces are identical. For the supremizer method, the reduced basis approximation space for the state-control product space is augmented with the solutions of a supremizer equation. We implement both of these methods for solving several parametrized control problems and assess their performance. Results indicate that the number of reduced basis vectors needed to approximate the solution space to some tolerance with the supremizer method is much larger, possibly double, that for aggregation. There are also some cases where the supremizer method fails to produce a converged solution. We present results to compare the accuracy, efficiency, and computational costs associated with both methods of stabilization which suggest that stabilization by aggregation is a superior stabilization method for control problems.
Quantum technology is increasingly relying on specialised statistical inference methods for analysing quantum measurement data. This motivates the development of "quantum statistics", a field that is shaping up at the overlap of quantum physics and "classical" statistics. One of the less investigated topics to date is that of statistical inference for infinite dimensional quantum systems, which can be seen as quantum counterpart of non-parametric statistics. In this paper we analyse the asymptotic theory of quantum statistical models consisting of ensembles of quantum systems which are identically prepared in a pure state. In the limit of large ensembles we establish the local asymptotic equivalence (LAE) of this i.i.d. model to a quantum Gaussian white noise model. We use the LAE result in order to establish minimax rates for the estimation of pure states belonging to Hermite-Sobolev classes of wave functions. Moreover, for quadratic functional estimation of the same states we note an elbow effect in the rates, whereas for testing a pure state a sharp parametric rate is attained over the nonparametric Hermite-Sobolev class.
In this paper we discuss potentially practical ways to produce expander graphs with good spectral properties and a compact description. We focus on several classes of uniform and bipartite expander graphs defined as random Schreier graphs of the general linear group over the finite field of size two. We perform numerical experiments and show that such constructions produce spectral expanders that can be useful for practical applications. To find a theoretical explanation of the observed experimental results, we used the method of moments to prove upper bounds for the expected second largest eigenvalue of the random Schreier graphs used in our constructions. We focus on bounds for which it is difficult to study the asymptotic behaviour but it is possible to compute non-trivial conclusions for relatively small graphs with parameters from our numerical experiments (e.g., with less than 2^200 vertices and degree at least logarithmic in the number of vertices).
Quantum networks constitute a major part of quantum technologies. They will boost distributed quantum computing drastically by providing a scalable modular architecture of quantum chips, or by establishing an infrastructure for measurement based quantum computing. Moreover, they will provide the backbone of the future quantum internet, allowing for high margins of security. Interestingly, the advantages that the quantum networks would provide for communications, rely on entanglement distribution, which suffers from high latency in protocols based on Bell pair distribution and bipartite entanglement swapping. Moreover, the designed algorithms for multipartite entanglement routing suffer from intractability issues making them unsolvable exactly in polynomial time. In this paper, we investigate a new approach for graph states distribution in quantum networks relying inherently on local quantum coding -- LQC -- isometries and on multipartite states transfer. Additionally, single-shot bounds for stabilizer states distribution are provided. Analogously to network coding, these bounds are shown to be achievable if appropriate isometries/stabilizer codes in relay nodes are chosen, which induces a lower latency entanglement distribution. As a matter of fact, the advantages of the protocol for different figures of merit of the network are provided.
This paper provide several mathematical analyses of the diffusion model in machine learning. The drift term of the backwards sampling process is represented as a conditional expectation involving the data distribution and the forward diffusion. The training process aims to find such a drift function by minimizing the mean-squared residue related to the conditional expectation. Using small-time approximations of the Green's function of the forward diffusion, we show that the analytical mean drift function in DDPM and the score function in SGM asymptotically blow up in the final stages of the sampling process for singular data distributions such as those concentrated on lower-dimensional manifolds, and is therefore difficult to approximate by a network. To overcome this difficulty, we derive a new target function and associated loss, which remains bounded even for singular data distributions. We illustrate the theoretical findings with several numerical examples.