亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Risk-based authentication (RBA) aims to protect end-users against attacks involving stolen or otherwise guessed passwords without requiring a second authentication method all the time. Online services typically set limits on what is still seen as normal and what is not, as well as the actions taken afterward. Consequently, RBA monitors different features, such as geolocation and device during login. If the features' values differ from the expected values, then a second authentication method might be requested. However, only a few online services publish information about how their systems work. This hinders not only RBA research but also its development and adoption in organizations. In order to understand how the RBA systems online services operate, black box testing is applied. To verify the results, we re-evaluate the three large providers: Google, Amazon, and Facebook. Based on our test setup and the test cases, we notice differences in RBA based on account creation at Google. Additionally, several test cases rarely trigger the RBA system. Our results provide new insights into RBA systems and raise several questions for future work.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系(xi)統編譯器、體系(xi)結構和(he)綜合國(guo)際會議。 Publisher:ACM。 SIT:

Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful Large Language Models (LLMs) and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods.

This paper addresses synthesizing receding-horizon controllers for nonlinear, control-affine dynamical systems under multiple incompatible hard and soft constraints. Handling incompatibility of constraints has mostly been addressed in literature by relaxing the soft constraints via slack variables. However, this may lead to trajectories that are far from the optimal solution and may compromise satisfaction of the hard constraints over time. In that regard, permanently dropping incompatible soft constraints may be beneficial for the satisfaction over time of the hard constraints (under the assumption that hard constraints are compatible with each other at initial time). To this end, motivated by approximate methods on the maximal feasible subset (maxFS) selection problem, we propose heuristics that depend on the Lagrange multipliers of the constraints. The main observation for using heuristics based on the Lagrange multipliers instead of slack variables (which is the standard approach in the related literature of finding maxFS) is that when the optimization is feasible, the Lagrange multiplier of a given constraint is non-zero, in contrast to the slack variable which is zero. This observation is particularly useful in the case of a dynamical nonlinear system where its control input is computed recursively as the optimization of a cost functional subject to the system dynamics and constraints, in the sense that the Lagrange multipliers of the constraints over a prediction horizon can indicate the constraints to be dropped so that the resulting constraints are compatible. The method is evaluated empirically in a case study with a robot navigating under multiple time and state constraints, and compared to a greedy method based on the Lagrange multiplier.

Large Language Models (LLMs) have shown promise in the autonomous driving sector, particularly in generalization and interpretability. We introduce a unique object-level multimodal LLM architecture that merges vectorized numeric modalities with a pre-trained LLM to improve context understanding in driving situations. We also present a new dataset of 160k QA pairs derived from 10k driving scenarios, paired with high quality control commands collected with RL agent and question answer pairs generated by teacher LLM (GPT-3.5). A distinct pretraining strategy is devised to align numeric vector modalities with static LLM representations using vector captioning language data. We also introduce an evaluation metric for Driving QA and demonstrate our LLM-driver's proficiency in interpreting driving scenarios, answering questions, and decision-making. Our findings highlight the potential of LLM-based driving action generation in comparison to traditional behavioral cloning. We make our benchmark, datasets, and model available for further exploration.

Speech Command Recognition (SCR), which deals with identification of short uttered speech commands, is crucial for various applications, including IoT devices and assistive technology. Despite the promise shown by Convolutional Neural Networks (CNNs) in SCR tasks, their efficacy relies heavily on hyper-parameter selection, which is typically laborious and time-consuming when done manually. This paper introduces a hyper-parameter selection method for CNNs based on the Differential Evolution (DE) algorithm, aiming to enhance performance in SCR tasks. Training and testing with the Google Speech Command (GSC) dataset, the proposed approach showed effectiveness in classifying speech commands. Moreover, a comparative analysis with Genetic Algorithm based selections and other deep CNN (DCNN) models highlighted the efficiency of the proposed DE algorithm in hyper-parameter selection for CNNs in SCR tasks.

Despite recent progress in Reinforcement Learning for robotics applications, many tasks remain prohibitively difficult to solve because of the expensive interaction cost. Transfer learning helps reduce the training time in the target domain by transferring knowledge learned in a source domain. Sim2Real transfer helps transfer knowledge from a simulated robotic domain to a physical target domain. Knowledge transfer reduces the time required to train a task in the physical world, where the cost of interactions is high. However, most existing approaches assume exact correspondence in the task structure and the physical properties of the two domains. This work proposes a framework for Few-Shot Policy Transfer between two domains through Observation Mapping and Behavior Cloning. We use Generative Adversarial Networks (GANs) along with a cycle-consistency loss to map the observations between the source and target domains and later use this learned mapping to clone the successful source task behavior policy to the target domain. We observe successful behavior policy transfer with limited target task interactions and in cases where the source and target task are semantically dissimilar.

LLM-based agents have recently emerged as promising tools for solving challenging problems without the need for task-specific finetuned models that can be expensive to procure. Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design. In this work we aim to alleviate the difficulty of designing and implementing new agents by proposing a minimalistic, high-level generation framework that simplifies the process of building agents. The framework we introduce allows the user to specify desired agent behaviors in Linear Temporal Logic (LTL). The declarative LTL specification is then used to construct a constrained decoder that guarantees the LLM will produce an output exhibiting the desired behavior. By designing our framework in this way, we obtain several benefits, including the ability to enforce complex agent behavior, the ability to formally validate prompt examples, and the ability to seamlessly incorporate content-focused logical constraints into generation. In particular, our declarative approach, in which the desired behavior is simply described without concern for how it should be implemented or enforced, enables rapid design, implementation and experimentation with different LLM-based agents. We demonstrate how the proposed framework can be used to implement recent LLM-based agents, and show how the guardrails our approach provides can lead to improvements in agent performance. In addition, we release our code for general use.

Distantly supervised named entity recognition (DS-NER) aims to locate entity mentions and classify their types with only knowledge bases or gazetteers and unlabeled corpus. However, distant annotations are noisy and degrade the performance of NER models. In this paper, we propose a noise-robust prototype network named MProto for the DS-NER task. Different from previous prototype-based NER methods, MProto represents each entity type with multiple prototypes to characterize the intra-class variance among entity representations. To optimize the classifier, each token should be assigned an appropriate ground-truth prototype and we consider such token-prototype assignment as an optimal transport (OT) problem. Furthermore, to mitigate the noise from incomplete labeling, we propose a novel denoised optimal transport (DOT) algorithm. Specifically, we utilize the assignment result between Other class tokens and all prototypes to distinguish unlabeled entity tokens from true negatives. Experiments on several DS-NER benchmarks demonstrate that our MProto achieves state-of-the-art performance. The source code is now available on Github.

Distributed optimization methods with random communication skips are gaining increasing attention due to their proven benefits in accelerating communication complexity. Nevertheless, existing research mainly focuses on centralized communication protocols for strongly convex deterministic settings. In this work, we provide a decentralized optimization method called RandCom, which incorporates probabilistic local updates. We analyze the performance of RandCom in stochastic non-convex, convex, and strongly convex settings and demonstrate its ability to asymptotically reduce communication overhead by the probability of communication. Additionally, we prove that RandCom achieves linear speedup as the number of nodes increases. In stochastic strongly convex settings, we further prove that RandCom can achieve linear speedup with network-independent stepsizes. Moreover, we apply RandCom to federated learning and provide positive results concerning the potential for achieving linear speedup and the suitability of the probabilistic local update approach for non-convex settings.

We investigate the problem of stochastic, combinatorial multi-armed bandits where the learner only has access to bandit feedback and the reward function can be non-linear. We provide a general framework for adapting discrete offline approximation algorithms into sublinear $\alpha$-regret methods that only require bandit feedback, achieving $\mathcal{O}\left(T^\frac{2}{3}\log(T)^\frac{1}{3}\right)$ expected cumulative $\alpha$-regret dependence on the horizon $T$. The framework only requires the offline algorithms to be robust to small errors in function evaluation. The adaptation procedure does not even require explicit knowledge of the offline approximation algorithm -- the offline algorithm can be used as a black box subroutine. To demonstrate the utility of the proposed framework, the proposed framework is applied to diverse applications in submodular maximization. The new CMAB algorithms for submodular maximization with knapsack constraints outperform a full-bandit method developed for the adversarial setting in experiments with real-world data.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司