Future wireless networks are expected to support diverse mobile services, including artificial intelligence (AI) services and ubiquitous data transmissions. Federated learning (FL), as a revolutionary learning approach, enables collaborative AI model training across distributed mobile edge devices. By exploiting the superposition property of multiple-access channels, over-the-air computation allows concurrent model uploading from massive devices over the same radio resources, and thus significantly reduces the communication cost of FL. In this paper, we study the coexistence of over-the-air FL and traditional information transfer (IT) in a mobile edge network. We propose a coexisting federated learning and information transfer (CFLIT) communication framework, where the FL and IT devices share the wireless spectrum in an OFDM system. Under this framework, we aim to maximize the IT data rate and guarantee a given FL convergence performance by optimizing the long-term radio resource allocation. A key challenge that limits the spectrum efficiency of the coexisting system lies in the large overhead incurred by frequent communication between the server and edge devices for FL model aggregation. To address the challenge, we rigorously analyze the impact of the computation-to-communication ratio on the convergence of over-the-air FL in wireless fading channels. The analysis reveals the existence of an optimal computation-to-communication ratio that minimizes the amount of radio resources needed for over-the-air FL to converge to a given error tolerance. Based on the analysis, we propose a low-complexity online algorithm to jointly optimize the radio resource allocation for both the FL devices and IT devices. Extensive numerical simulations verify the superior performance of the proposed design for the coexistence of FL and IT devices in wireless cellular systems.
With high levels of intermittent power generation and dynamic demand patterns, accurate forecasts for residential loads have become essential. Smart meters can play an important role when making these forecasts as they provide detailed load data. However, using smart meter data for load forecasting is challenging due to data privacy requirements. This paper investigates how these requirements can be addressed through a combination of federated learning and privacy preserving techniques such as differential privacy and secure aggregation. For our analysis, we employ a large set of residential load data and simulate how different federated learning models and privacy preserving techniques affect performance and privacy. Our simulations reveal that combining federated learning and privacy preserving techniques can secure both high forecasting accuracy and near-complete privacy. Specifically, we find that such combinations enable a high level of information sharing while ensuring privacy of both the processed load data and forecasting models. Moreover, we identify and discuss challenges of applying federated learning, differential privacy and secure aggregation for residential short-term load forecasting.
Federated learning, where algorithms are trained across multiple decentralized devices without sharing local data, is increasingly popular in distributed machine learning practice. Typically, a graph structure $G$ exists behind local devices for communication. In this work, we consider parameter estimation in federated learning with data distribution and communication heterogeneity, as well as limited computational capacity of local devices. We encode the distribution heterogeneity by parametrizing distributions on local devices with a set of distinct $p$-dimensional vectors. We then propose to jointly estimate parameters of all devices under the $M$-estimation framework with the fused Lasso regularization, encouraging an equal estimate of parameters on connected devices in $G$. We provide a general result for our estimator depending on $G$, which can be further calibrated to obtain convergence rates for various specific problem setups. Surprisingly, our estimator attains the optimal rate under certain graph fidelity condition on $G$, as if we could aggregate all samples sharing the same distribution. If the graph fidelity condition is not met, we propose an edge selection procedure via multiple testing to ensure the optimality. To ease the burden of local computation, a decentralized stochastic version of ADMM is provided, with convergence rate $O(T^{-1}\log T)$ where $T$ denotes the number of iterations. We highlight that, our algorithm transmits only parameters along edges of $G$ at each iteration, without requiring a central machine, which preserves privacy. We further extend it to the case where devices are randomly inaccessible during the training process, with a similar algorithmic convergence guarantee. The computational and statistical efficiency of our method is evidenced by simulation experiments and the 2020 US presidential election data set.
Federated learning learns a neural network model by aggregating the knowledge from a group of distributed clients under the privacy-preserving constraint. In this work, we show that this paradigm might inherit the adversarial vulnerability of the centralized neural network, i.e., it has deteriorated performance on adversarial examples when the model is deployed. This is even more alarming when federated learning paradigm is designed to approximate the updating behavior of a centralized neural network. To solve this problem, we propose an adversarially robust federated learning framework, named Fed_BVA, with improved server and client update mechanisms. This is motivated by our observation that the generalization error in federated learning can be naturally decomposed into the bias and variance triggered by multiple clients' predictions. Thus, we propose to generate the adversarial examples via maximizing the bias and variance during server update, and learn the adversarially robust model updates with those examples during client update. As a result, an adversarially robust neural network can be aggregated from these improved local clients' model updates. The experiments are conducted on multiple benchmark data sets using several prevalent neural network models, and the empirical results show that our framework is robust against white-box and black-box adversarial corruptions under both IID and non-IID settings.
Personalized federated learning allows for clients in a distributed system to train a neural network tailored to their unique local data while leveraging information at other clients. However, clients' models are vulnerable to attacks during both the training and testing phases. In this paper we address the issue of adversarial clients crafting evasion attacks at test time to deceive other clients. For example, adversaries may aim to deceive spam filters and recommendation systems trained with personalized federated learning for monetary gain. The adversarial clients have varying degrees of personalization based on the method of distributed learning, leading to a "grey-box" situation. We are the first to characterize the transferability of such internal evasion attacks for different learning methods and analyze the trade-off between model accuracy and robustness depending on the degree of personalization and similarities in client data. We introduce a defense mechanism, pFedDef, that performs personalized federated adversarial training while respecting resource limitations at clients that inhibit adversarial training. Overall, pFedDef increases relative grey-box adversarial robustness by 62% compared to federated adversarial training and performs well even under limited system resources.
With its powerful capability to deal with graph data widely found in practical applications, graph neural networks (GNNs) have received significant research attention. However, as societies become increasingly concerned with data privacy, GNNs face the need to adapt to this new normal. This has led to the rapid development of federated graph neural networks (FedGNNs) research in recent years. Although promising, this interdisciplinary field is highly challenging for interested researchers to enter into. The lack of an insightful survey on this topic only exacerbates this problem. In this paper, we bridge this gap by offering a comprehensive survey of this emerging field. We propose a unique 3-tiered taxonomy of the FedGNNs literature to provide a clear view into how GNNs work in the context of Federated Learning (FL). It puts existing works into perspective by analyzing how graph data manifest themselves in FL settings, how GNN training is performed under different FL system architectures and degrees of graph data overlap across data silo, and how GNN aggregation is performed under various FL settings. Through discussions of the advantages and limitations of existing works, we envision future research directions that can help build more robust, dynamic, efficient, and interpretable FedGNNs.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.