亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many machine learning models appear to deploy effortlessly under distribution shift, and perform well on a target distribution that is considerably different from the training distribution. Yet, learning theory of distribution shift bounds performance on the target distribution as a function of the discrepancy between the source and target, rarely guaranteeing high target accuracy. Motivated by this gap, this work takes a closer look at the theory of distribution shift for a classifier from a source to a target distribution. Instead of relying on the discrepancy, we adopt an Invariant-Risk-Minimization (IRM)-like assumption connecting the distributions, and characterize conditions under which data from a source distribution is sufficient for accurate classification of the target. When these conditions are not met, we show when only unlabeled data from the target is sufficient, and when labeled target data is needed. In all cases, we provide rigorous theoretical guarantees in the large sample regime.

相關內容

Deep learning-based models are widely deployed in autonomous driving areas, especially the increasingly noticed end-to-end solutions. However, the black-box property of these models raises concerns about their trustworthiness and safety for autonomous driving, and how to debug the causality has become a pressing concern. Despite some existing research on the explainability of autonomous driving, there is currently no systematic solution to help researchers debug and identify the key factors that lead to the final predicted action of end-to-end autonomous driving. In this work, we propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving. First, we validate the essential information that the final planning depends on by using controlled variables and counterfactual interventions for qualitative analysis. Then, we quantitatively assess the factors influencing model decisions by visualizing and statistically analyzing the response of key model inputs. Finally, based on the comprehensive study of the multi-factorial end-to-end autonomous driving system, we have developed a strong baseline and a tool for exploring causality in the close-loop simulator CARLA. It leverages the essential input sources to obtain a well-designed model, resulting in highly competitive capabilities. As far as we know, our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one. Thorough close-loop experiments demonstrate that our method can be applied to end-to-end autonomous driving solutions for causality debugging. Code will be available at //github.com/bdvisl/DriveInsight.

Invariant models, one important class of geometric deep learning models, are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds. These models are characterized by their simplicity, good experimental results and computational efficiency. However, their theoretical expressive power still remains unclear, restricting a deeper understanding of the potential of such models. In this work, we concentrate on characterizing the theoretical expressiveness of a wide range of invariant models. We first rigorously bound the expressiveness of the most classic invariant model, message-passing neural networks incorporating distance (DisGNN), restricting its unidentifiable cases to be only highly symmetric point clouds. We then show that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks (subgraph GNNs), can effectively break these corner cases' symmetry and thus achieve E(3)-completeness. By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness; 2) DimeNet, GemNet and SphereNet, three well-established invariant models, are also all capable of achieving E(3)-completeness. Our theoretical results fill the gap in the theoretical power of invariant models, contributing to a rigorous and comprehensive understanding of their capabilities. We also empirically evaluated GeoNGNN, the simplest model within the large E(3)-complete family we established, which achieves competitive results to models relying on high-order invariant/equivariant representations on molecule-relevant tasks.

Earth observation data such as satellite imagery can, when combined with machine learning, can have far-reaching impacts on our understanding of the geography of poverty through the prediction of living conditions, especially where government-derived economic indicators are either unavailable or potentially untrustworthy. Recent work has progressed in using Earth Observation (EO) data not only to predict spatial economic outcomes but also to explore cause and effect, an understanding which is critical for downstream policy analysis. In this review, we first document the growth of interest in using satellite images together with EO data in causal analysis. We then trace the relationship between spatial statistics and machine learning methods before discussing four ways in which EO data has been used in causal machine learning pipelines -- (1.) poverty outcome imputation for downstream causal analysis, (2.) EO image deconfounding, (3.) EO-based treatment effect heterogeneity, and (4.) EO-based transportability analysis. We conclude by providing a step-by-step workflow for how researchers can incorporate EO data in causal ML analysis going forward, outlining major choices of data, models, and evaluation metrics.

Evaluating the generalisation capabilities of multimodal models based solely on their performance on out-of-distribution data fails to capture their true robustness. This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models, considering architectural design, input perturbations across language and vision modalities, and increased task complexity. The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes, raising concerns about overfitting to spurious correlations. By employing this evaluation framework on current Transformer-based multimodal models for robotic manipulation tasks, we uncover limitations and suggest future advancements should focus on architectural and training innovations that better integrate multimodal inputs, enhancing a model's generalisation prowess by prioritising sensitivity to input content over incidental correlations.

The next generation of machine learning systems must be adept at perceiving and interacting with the physical world through a diverse array of sensory channels. Commonly referred to as the `Internet of Things (IoT)' ecosystem, sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments and the humans inside them. Despite the potential for understanding human wellbeing, controlling physical devices, and interconnecting smart cities, the community has seen limited benchmarks for building machine learning systems for IoT. Existing efforts are often specialized to a single sensory modality or prediction task, which makes it difficult to study and train large-scale models across many IoT sensors and tasks. To accelerate the development of new machine learning technologies for IoT, this paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks. MultiIoT introduces unique challenges involving (1) generalizable learning from many sensory modalities, (2) multimodal interactions across long temporal ranges, (3) extreme heterogeneity due to unique structure and noise topologies in real-world sensors, and (4) complexity during training and inference. We evaluate a comprehensive set of models on MultiIoT, including modality and task-specific methods, multisensory and multitask supervised models, and large multisensory foundation models. Our results highlight opportunities for ML to make a significant impact in IoT, but many challenges in scalable learning from heterogeneous, long-range, and imperfect sensory modalities still persist. We release all code and data to accelerate future research in machine learning for IoT.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Deep generative modelling is a class of techniques that train deep neural networks to model the distribution of training samples. Research has fragmented into various interconnected approaches, each of which making trade-offs including run-time, diversity, and architectural restrictions. In particular, this compendium covers energy-based models, variational autoencoders, generative adversarial networks, autoregressive models, normalizing flows, in addition to numerous hybrid approaches. These techniques are drawn under a single cohesive framework, comparing and contrasting to explain the premises behind each, while reviewing current state-of-the-art advances and implementations.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

北京阿比特科技有限公司