亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present algorithms for computing the reduced Gr\"{o}bner basis of the vanishing ideal of a finite set of points in a frame of ideal interpolation. Ideal interpolation is defined by a linear projector whose kernel is a polynomial ideal. In this paper, we translate interpolation condition functionals into formal power series via Taylor expansion, then the reduced Gr\"{o}bner basis is read from formal power series by Gaussian elimination. Our algorithm has a polynomial time complexity. It compares favorably with MMM algorithm in single point ideal interpolation and some several points ideal interpolation.

相關內容

We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.

We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.

The Wiener-Hopf equations are a Toeplitz system of linear equations that naturally arise in several applications in time series. These include the update and prediction step of the stationary Kalman filter equations and the prediction of bivariate time series. The celebrated Wiener-Hopf technique is usually used for solving these equations and is based on a comparison of coefficients in a Fourier series expansion. However, a statistical interpretation of both the method and solution is opaque. The purpose of this note is to revisit the (discrete) Wiener-Hopf equations and obtain an alternative solution that is more aligned with classical techniques in time series analysis. Specifically, we propose a solution to the Wiener-Hopf equations that combines linear prediction with deconvolution. The Wiener-Hopf solution requires the spectral factorization of the underlying spectral density function. For ease of evaluation it is often assumed that the spectral density is rational. This allows one to obtain a computationally tractable solution. However, this leads to an approximation error when the underlying spectral density is not a rational function. We use the proposed solution with Baxter's inequality to derive an error bound for the rational spectral density approximation.

In this work, we propose a novel formulation for the solution of partial differential equations using finite element methods on unfitted meshes. The proposed formulation relies on the discrete extension operator proposed in the aggregated finite element method. This formulation is robust with respect to the location of the boundary/interface within the cell. One can prove enhanced stability results, not only on the physical domain, but on the whole active mesh. However, the stability constants grow exponentially with the polynomial order being used, since the underlying extension operators are defined via extrapolation. To address this issue, we introduce a new variant of aggregated finite elements, in which the extension in the physical domain is an interpolation for polynomials of order higher than two. As a result, the stability constants only grow at a polynomial rate with the order of approximation. We demonstrate that this approach enables robust high-order approximations with the aggregated finite element method.

This paper presents a systematic theoretical framework to derive the energy identities of general implicit and explicit Runge--Kutta (RK) methods for linear seminegative systems. It generalizes the stability analysis of explicit RK methods in [Z. Sun and C.-W. Shu, SIAM J. Numer. Anal., 57 (2019), pp. 1158-1182]. The established energy identities provide a precise characterization on whether and how the energy dissipates in the RK discretization, thereby leading to weak and strong stability criteria of RK methods. Furthermore, we discover a unified energy identity for all the diagonal Pade approximations, based on an analytical Cholesky type decomposition of a class of symmetric matrices. The structure of the matrices is very complicated, rendering the discovery of the unified energy identity and the proof of the decomposition highly challenging. Our proofs involve the construction of technical combinatorial identities and novel techniques from the theory of hypergeometric series. Our framework is motivated by a discrete analogue of integration by parts technique and a series expansion of the continuous energy law. In some special cases, our analyses establish a close connection between the continuous and discrete energy laws, enhancing our understanding of their intrinsic mechanisms. Several specific examples of implicit methods are given to illustrate the discrete energy laws. A few numerical examples further confirm the theoretical properties.

We develop an algebraic theory of supports for $R$-linear codes of fixed length, where $R$ is a finite commutative unitary ring. A support naturally induces a notion of generalized weights and allows one to associate a monomial ideal to a code. Our main result states that, under suitable assumptions, the generalized weights of a code can be obtained from the graded Betti numbers of its associated monomial ideal. In the case of $\mathbb{F}_q$-linear codes endowed with the Hamming metric, the ideal coincides with the Stanley-Reisner ideal of the matroid associated to the code via its parity-check matrix. In this special setting, we recover the known result that the generalized weights of an $\mathbb{F}_q$-linear code can be obtained from the graded Betti numbers of the ideal of the matroid associated to the code. We also study subcodes and codewords of minimal support in a code, proving that a large class of $R$-linear codes is generated by its codewords of minimal support.

Given polynomials $f_0,\dots, f_k$ the Ideal Membership Problem, IMP for short, asks if $f_0$ belongs to the ideal generated by $f_1,\dots, f_k$. In the search version of this problem the task is to find a proof of this fact. The IMP is a well-known fundamental problem with numerous applications, for instance, it underlies many proof systems based on polynomials such as Nullstellensatz, Polynomial Calculus, and Sum-of-Squares. Although the IMP is in general intractable, in many important cases it can be efficiently solved. Mastrolilli [SODA'19] initiated a systematic study of IMPs for ideals arising from Constraint Satisfaction Problems (CSPs), parameterized by constraint languages, denoted IMP($\Gamma$). The ultimate goal of this line of research is to classify all such IMPs accordingly to their complexity. Mastrolilli achieved this goal for IMPs arising from CSP($\Gamma$) where $\Gamma$ is a Boolean constraint language, while Bulatov and Rafiey [ArXiv'21] advanced these results to several cases of CSPs over finite domains. In this paper we consider IMPs arising from CSPs over `affine' constraint languages, in which constraints are subgroups (or their cosets) of direct products of Abelian groups. This kind of CSPs include systems of linear equations and are considered one of the most important types of tractable CSPs. Some special cases of the problem have been considered before by Bharathi and Mastrolilli [MFCS'21] for linear equation modulo 2, and by Bulatov and Rafiey [ArXiv'21] to systems of linear equations over $GF(p)$, $p$ prime. Here we prove that if $\Gamma$ is an affine constraint language then IMP($\Gamma$) is solvable in polynomial time assuming the input polynomial has bounded degree.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.

In this paper, we propose a nonlinear distance metric learning scheme based on the fusion of component linear metrics. Instead of merging displacements at each data point, our model calculates the velocities induced by the component transformations, via a geodesic interpolation on a Lie transfor- mation group. Such velocities are later summed up to produce a global transformation that is guaranteed to be diffeomorphic. Consequently, pair-wise distances computed this way conform to a smooth and spatially varying metric, which can greatly benefit k-NN classification. Experiments on synthetic and real datasets demonstrate the effectiveness of our model.

北京阿比特科技有限公司