亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerging applications such as autonomous driving and Internet of things (IoT) services put forward the demand for simutaneous sensing and communication functions in the same system. Integrated sensing and communication (ISAC) has the potential to meet the demands of ubiquitous communication and high-precision sensing due to the advantages of spectrum and hardware resource sharing, as well as the mutual enhancement of sensing and communication. However, ISAC system faces severe interference requiring effective interference suppression, avoidance, and exploitation techniques. This article provides a comprehensive survey on the interference management techniques in ISAC systems, involving network architecture, system design, signal processing, and resource allocation. We first review the channel modeling and performance metrics of the ISAC system. Then, the methods for managing self-interference (SI), mutual interference (MI), and clutter in a single base station (BS) system are summarized, including interference suppression, interference avoidance and interference exploitation methods. Furthermore, cooperative interference management methods are studied to address the cross-link interference (CLI) in a coordinated multipoint ISAC (CoMP-ISAC) system. Finally, future trends are revealed. This article may provide a reference for the study of interference management in ISAC systems.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

In advancing parallel programming, particularly with OpenMP, the shift towards NLP-based methods marks a significant innovation beyond traditional S2S tools like Autopar and Cetus. These NLP approaches train on extensive datasets of examples to efficiently generate optimized parallel code, streamlining the development process. This method's strength lies in its ability to swiftly produce parallelized code that runs efficiently. However, this reliance on NLP models, without direct code analysis, can introduce inaccuracies, as these models might not fully grasp the nuanced semantics of the code they parallelize. We build OMP-Engineer, which balances the efficiency and scalability of NLP models with the accuracy and reliability of traditional methods, aiming to enhance the performance of automating parallelization while navigating its inherent challenges.

The demand for precise information on DRAM microarchitectures and error characteristics has surged, driven by the need to explore processing in memory, enhance reliability, and mitigate security vulnerability. Nonetheless, DRAM manufacturers have disclosed only a limited amount of information, making it difficult to find specific information on their DRAM microarchitectures. This paper addresses this gap by presenting more rigorous findings on the microarchitectures of commodity DRAM chips and their impacts on the characteristics of activate-induced bitflips (AIBs), such as RowHammer and RowPress. The previous studies have also attempted to understand the DRAM microarchitectures and associated behaviors, but we have found some of their results to be misled by inaccurate address mapping and internal data swizzling, or lack of a deeper understanding of the modern DRAM cell structure. For accurate and efficient reverse-engineering, we use three tools: AIBs, retention time test, and RowCopy, which can be cross-validated. With these three tools, we first take a macroscopic view of modern DRAM chips to uncover the size, structure, and operation of their subarrays, memory array tiles (MATs), and rows. Then, we analyze AIB characteristics based on the microscopic view of the DRAM microarchitecture, such as 6F^2 cell layout, through which we rectify misunderstandings regarding AIBs and discover a new data pattern that accelerates AIBs. Lastly, based on our findings at both macroscopic and microscopic levels, we identify previously unknown AIB vulnerabilities and propose a simple yet effective protection solution.

Spurred by recent advances in Large Language Models (LLMs), virtual assistants are poised to take a leap forward in terms of their dialogue capabilities. Yet a major bottleneck to achieving genuinely transformative task-oriented dialogue capabilities remains the scarcity of high quality data. Existing datasets, while impressive in scale, have limited domain coverage and contain few genuinely challenging conversational phenomena; those which are present are typically unlabelled, making it difficult to assess the strengths and weaknesses of models without time-consuming and costly human evaluation. Moreover, creating high quality dialogue data has until now required considerable human input, limiting both the scale of these datasets and the ability to rapidly bootstrap data for a new target domain. We aim to overcome these issues with LUCID, a modularised and highly automated LLM-driven data generation system that produces realistic, diverse and challenging dialogues. We use LUCID to generate a seed dataset of 4,277 conversations across 100 intents to demonstrate its capabilities, with a human review finding consistently high quality labels in the generated data.

The booming of Internet-of-Things (IoT) is expected to provide more intelligent and reliable communication services for higher network coverage, massive connectivity, and low-cost solutions for 6G services. However, frequent charging and battery replacement of these massive IoT devices brings a series of challenges. Zero energy devices, which rely on energy-harvesting technologies and can operate without battery replacement or charging, play a pivotal role in facilitating the massive use of IoT devices. In order to enable reliable communications of such low-power devices, Manchester-coded on-off keying (OOK) modulation and non-coherent detections are attractive techniques due to their energy efficiency, robustness in noisy environments, and simplicity in receiver design. Moreover, to extend their communication range, employing channel coding along with enhanced detection schemes is crucial. In this paper, a novel soft-decision decoder is designed for OOK-based low-power receivers to enhance their detection performance. In addition, exact closed-form expressions and two simplified approximations are derived for the log-likelihood ratio (LLR), an essential metric for soft decoding. Numerical results demonstrate the significant coverage gain achieved through soft decoding for convolutional code.

Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.

Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.

Recommender systems are important and powerful tools for various personalized services. Traditionally, these systems use data mining and machine learning techniques to make recommendations based on correlations found in the data. However, relying solely on correlation without considering the underlying causal mechanism may lead to various practical issues such as fairness, explainability, robustness, bias, echo chamber and controllability problems. Therefore, researchers in related area have begun incorporating causality into recommendation systems to address these issues. In this survey, we review the existing literature on causal inference in recommender systems. We discuss the fundamental concepts of both recommender systems and causal inference as well as their relationship, and review the existing work on causal methods for different problems in recommender systems. Finally, we discuss open problems and future directions in the field of causal inference for recommendations.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司