亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The design or the optimization of transport systems is a difficult task. This is especially true in the case of the introduction of new transport modes in an existing system. The main reason is, that even small additions and changes result in the emergence of new travel patterns, likely resulting in an adaptation of the travel behavior of multiple other agents in the system. Here we consider the optimization of future Urban Air Mobility services under consideration of effects induced by the new mode to an existing system. We tackle this problem through a bi-level network design approach, in which the discrete decisions of the network design planner are optimized based on the evaluated dynamic demand of the user's mode choices. We solve the activity-based network design problem (AB-NDP) using a Genetic Algorithm on a multi-objective optimization problem while evaluating the dynamic demand with the large-scale Multi-Agent Transport Simulation (MATSim) framework. The proposed bi-level approach is compared against the results of a coverage approach using a static demand method. The bi-level study shows better results for expected UAM demand and total travel time savings across the transportation system. Due to its generic character, the demonstrated utilization of a bi-level method is applicable to other mobility service design questions and to other regions.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際(ji)網絡會議。 Publisher:IFIP。 SIT:

Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (\textit{i.e., Mixup}) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physiological datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data.

Diffusion models have shown promising results in speech enhancement, using a task-adapted diffusion process for the conditional generation of clean speech given a noisy mixture. However, at test time, the neural network used for score estimation is called multiple times to solve the iterative reverse process. This results in a slow inference process and causes discretization errors that accumulate over the sampling trajectory. In this paper, we address these limitations through a two-stage training approach. In the first stage, we train the diffusion model the usual way using the generative denoising score matching loss. In the second stage, we compute the enhanced signal by solving the reverse process and compare the resulting estimate to the clean speech target using a predictive loss. We show that using this second training stage enables achieving the same performance as the baseline model using only 5 function evaluations instead of 60 function evaluations. While the performance of usual generative diffusion algorithms drops dramatically when lowering the number of function evaluations (NFEs) to obtain single-step diffusion, we show that our proposed method keeps a steady performance and therefore largely outperforms the diffusion baseline in this setting and also generalizes better than its predictive counterpart.

We consider the problem of signal estimation in a generalized linear model (GLM). GLMs include many canonical problems in statistical estimation, such as linear regression, phase retrieval, and 1-bit compressed sensing. Recent work has precisely characterized the asymptotic minimum mean-squared error (MMSE) for GLMs with i.i.d. Gaussian sensing matrices. However, in many models there is a significant gap between the MMSE and the performance of the best known feasible estimators. In this work, we address this issue by considering GLMs defined via spatially coupled sensing matrices. We propose an efficient approximate message passing (AMP) algorithm for estimation and prove that with a simple choice of spatially coupled design, the MSE of a carefully tuned AMP estimator approaches the asymptotic MMSE in the high-dimensional limit. To prove the result, we first rigorously characterize the asymptotic performance of AMP for a GLM with a generic spatially coupled design. This characterization is in terms of a deterministic recursion (`state evolution') that depends on the parameters defining the spatial coupling. Then, using a simple spatially coupled design and judicious choice of functions defining the AMP, we analyze the fixed points of the resulting state evolution and show that it achieves the asymptotic MMSE. Numerical results for phase retrieval and rectified linear regression show that spatially coupled designs can yield substantially lower MSE than i.i.d. Gaussian designs at finite dimensions when used with AMP algorithms.

Tiny, causal models are crucial for embedded audio machine learning applications. Model compression can be achieved via distilling knowledge from a large teacher into a smaller student model. In this work, we propose a novel two-step approach for tiny speech enhancement model distillation. In contrast to the standard approach of a weighted mixture of distillation and supervised losses, we firstly pre-train the student using only the knowledge distillation (KD) objective, after which we switch to a fully supervised training regime. We also propose a novel fine-grained similarity-preserving KD loss, which aims to match the student's intra-activation Gram matrices to that of the teacher. Our method demonstrates broad improvements, but particularly shines in adverse conditions including high compression and low signal to noise ratios (SNR), yielding signal to distortion ratio gains of 0.9 dB and 1.1 dB, respectively, at -5 dB input SNR and 63x compression compared to baseline.

Accurate analytical and numerical modeling of multiscale systems is a daunting task. The need to properly resolve spatial and temporal scales spanning multiple orders of magnitude pushes the limits of both our theoretical models as well as our computational capabilities. Rigorous upscaling techniques enable efficient computation while bounding/tracking errors and helping to make informed cost-accuracy tradeoffs. The biggest challenges arise when the applicability conditions of upscaled models break down. Here, we present a non-intrusive two-way (iterative bottom-up top-down) coupled hybrid model, applied to thermal runaway in battery packs, that combines fine-scale and upscaled equations in the same numerical simulation to achieve predictive accuracy while limiting computational costs. First, we develop two methods with different orders of accuracy to enforce continuity at the coupling boundary. Then, we derive weak (i.e., variational) formulations of the fine-scale and upscaled governing equations for finite element (FE) discretization and numerical implementation in FEniCS. We demonstrate that hybrid simulations can accurately predict the average temperature fields within error bounds determined a priori by homogenization theory. Finally, we demonstrate the computational efficiency of the hybrid algorithm against fine-scale simulations.

Despite the general consensus in transport research community that model calibration and validation are necessary to enhance model predictive performance, there exist significant inconsistencies in the literature. This is primarily due to a lack of consistent definitions, and a unified and statistically sound framework. In this paper, we provide a general and rigorous formulation of the model calibration and validation problem, and highlight its relation to statistical inference. We also conduct a comprehensive review of the steps and challenges involved, as well as point out inconsistencies, before providing suggestions on improving the current practices. This paper is intended to help the practitioners better understand the nature of model calibration and validation, and to promote statistically rigorous and correct practices. Although the examples are drawn from a transport research background - and that is our target audience - the content in this paper is equally applicable to other modelling contexts.

RGB-T saliency detection has emerged as an important computer vision task, identifying conspicuous objects in challenging scenes such as dark environments. However, existing methods neglect the characteristics of cross-modal features and rely solely on network structures to fuse RGB and thermal features. To address this, we first propose a Multi-Modal Hybrid loss (MMHL) that comprises supervised and self-supervised loss functions. The supervised loss component of MMHL distinctly utilizes semantic features from different modalities, while the self-supervised loss component reduces the distance between RGB and thermal features. We further consider both spatial and channel information during feature fusion and propose the Hybrid Fusion Module to effectively fuse RGB and thermal features. Lastly, instead of jointly training the network with cross-modal features, we implement a sequential training strategy which performs training only on RGB images in the first stage and then learns cross-modal features in the second stage. This training strategy improves saliency detection performance without computational overhead. Results from performance evaluation and ablation studies demonstrate the superior performance achieved by the proposed method compared with the existing state-of-the-art methods.

Fairness problems in recommender systems often have a complexity in practice that is not adequately captured in simplified research formulations. A social choice formulation of the fairness problem, operating within a multi-agent architecture of fairness concerns, offers a flexible and multi-aspect alternative to fairness-aware recommendation approaches. Leveraging social choice allows for increased generality and the possibility of tapping into well-studied social choice algorithms for resolving the tension between multiple, competing fairness concerns. This paper explores a range of options for choice mechanisms in multi-aspect fairness applications using both real and synthetic data and shows that different classes of choice and allocation mechanisms yield different but consistent fairness / accuracy tradeoffs. We also show that a multi-agent formulation offers flexibility in adapting to user population dynamics.

Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司