Complex logical query answering (CLQA) in knowledge graphs (KGs) goes beyond simple KG completion and aims at answering compositional queries comprised of multiple projections and logical operations. Existing CLQA methods that learn parameters bound to certain entity or relation vocabularies can only be applied to the graph they are trained on which requires substantial training time before being deployed on a new graph. Here we present UltraQuery, the first foundation model for inductive reasoning that can zero-shot answer logical queries on any KG. The core idea of UltraQuery is to derive both projections and logical operations as vocabulary-independent functions which generalize to new entities and relations in any KG. With the projection operation initialized from a pre-trained inductive KG reasoning model, UltraQuery can solve CLQA on any KG after finetuning on a single dataset. Experimenting on 23 datasets, UltraQuery in the zero-shot inference mode shows competitive or better query answering performance than best available baselines and sets a new state of the art on 15 of them.
We explore the capability of four open-sourcelarge language models (LLMs) in argumentation mining (AM). We conduct experiments on three different corpora; persuasive essays(PE), argumentative microtexts (AMT) Part 1 and Part 2, based on two argumentation mining sub-tasks: (i) argumentative discourse units classifications (ADUC), and (ii) argumentative relation classification (ARC). This work aims to assess the argumentation capability of open-source LLMs, including Mistral 7B, Mixtral8x7B, LlamA2 7B and LlamA3 8B in both, zero-shot and few-shot scenarios. Our analysis contributes to further assessing computational argumentation with open-source LLMs in future research efforts.
This research presents FDASynthesis, a novel algorithm designed to generate synthetic GPS trajectory data while preserving privacy. After pre-processing the input GPS data, human mobility traces are modeled as multidimensional curves using Functional Data Analysis (FDA). Then, the synthesis process identifies the K-nearest trajectories and averages their Square-Root Velocity Functions (SRVFs) to generate synthetic data. This results in synthetic trajectories that maintain the utility of the original data while ensuring privacy. Although applied for human mobility research, FDASynthesis is highly adaptable to different types of functional data, offering a scalable solution in various application domains.
In the industry, numerous tasks are deployed online. Traditional approaches often tackle each task separately by its own network, which leads to excessive costs for developing and scaling models, especially in the context of large language models. Although multi-task methods can save costs through parameter sharing, they often struggle to outperform single-task methods in real-world applications. To tackle these challenges, we present a three-stage multi-task learning framework for large language models. It involves task filtering, followed by fine-tuning on high-resource tasks, and finally fine-tuning on all tasks. We conducted comprehensive experiments in single-task and multi-task settings. Our approach, exemplified on different benchmarks, demonstrates that it is able to achieve performance comparable to the single-task method while reducing up to 90.9\% of its overhead.
Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.