亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum optimization algorithms (QOAs) have the potential to fundamentally transform the application of optimization methods in decision making. For certain classes of optimization problems, it is widely believed that QOA enables significant run-time performance benefits over current state-of-the art solutions. With the latest progress on building quantum computers entering the industrialization stage, quantum-based optimization algorithms have become more relevant. The recent extreme increase in the number of publications in the field of QOA demonstrates the growing importance of the topic in both the academia and the industry. The objectives of this paper are as follows: (1) First, we provide insight into the main techniques of quantum-based optimization algorithms for decision making. (2) We describe and compare the two basic classes of adiabatic and gate-based optimization algorithms and argue their potentials and limitations. (3) Herein, we also investigate the key operations research application areas that are expected to be considerably impacted by the use of QOA in decision making in the future. (4) Finally, current implications arising from the future use of QOA from an operations research perspective are discussed.

相關內容

While AI algorithms have shown remarkable success in various fields, their lack of transparency hinders their application to real-life tasks. Although explanations targeted at non-experts are necessary for user trust and human-AI collaboration, the majority of explanation methods for AI are focused on developers and expert users. Counterfactual explanations are local explanations that offer users advice on what can be changed in the input for the output of the black-box model to change. Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system. While extensively researched in supervised learning, there are few methods applying them to reinforcement learning (RL). In this work, we explore the reasons for the underrepresentation of a powerful explanation method in RL. We start by reviewing the current work in counterfactual explanations in supervised learning. Additionally, we explore the differences between counterfactual explanations in supervised learning and RL and identify the main challenges that prevent the adoption of methods from supervised in reinforcement learning. Finally, we redefine counterfactuals for RL and propose research directions for implementing counterfactuals in RL.

Evolutionary algorithms (EAs) have been widely and successfully applied to solve multi-objective optimization problems, due to their nature of population-based search. Population update, a key component in multi-objective EAs (MOEAs), is usually performed in a greedy, deterministic manner. That is, the next-generation population is formed by selecting the best solutions from the current population and newly-generated solutions (irrespective of the selection criteria used such as Pareto dominance, crowdedness and indicators). In this paper, we question this practice. We analytically present that stochastic population update can be beneficial for the search of MOEAs. Specifically, we prove that the expected running time of two well-established MOEAs, SMS-EMOA and NSGA-II, for solving two bi-objective problems, OneJumpZeroJump and bi-objective RealRoyalRoad, can be exponentially decreased if replacing its deterministic population update mechanism by a stochastic one. Empirical studies also verify the effectiveness of the proposed population update method. This work is an attempt to challenge a common practice in the design of existing MOEAs. Its positive results, which might hold more generally, should encourage the exploration of developing new MOEAs in the area.

Bilevel optimization reveals the inner structure of otherwise oblique optimization problems, such as hyperparameter tuning, neural architecture search, and meta-learning. A common goal in bilevel optimization is to minimize a hyper-objective that implicitly depends on the solution set of the lower-level function. Although this hyper-objective approach is widely used, its theoretical properties have not been thoroughly investigated in cases where \textit{the lower-level functions lack strong convexity}. In this work, we first provide hardness results to show that the goal of finding stationary points of the hyper-objective for nonconvex-convex bilevel optimization can be intractable for zero-respecting algorithms. Then we study a class of tractable nonconvex-nonconvex bilevel problems when the lower-level function satisfies the Polyak-{\L}ojasiewicz (PL) condition. We show a simple first-order algorithm can achieve better complexity bounds of $\tilde{\mathcal{O}}(\epsilon^{-2})$, $\tilde{\mathcal{O}}(\epsilon^{-4})$ and $\tilde{\mathcal{O}}(\epsilon^{-6})$ in the deterministic, partially stochastic, and fully stochastic setting respectively. The complexities in the first two cases are optimal up to logarithmic factors.

Stochastic gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning. Contrary to the empirical practice of sampling from the datasets without replacement and with (possible) reshuffling at each epoch, the theoretical counterpart of SGD usually relies on the assumption of sampling with replacement. It is only very recently that SGD with sampling without replacement -- shuffled SGD -- has been analyzed. For convex finite sum problems with $n$ components and under the $L$-smoothness assumption for each component function, there are matching upper and lower bounds, under sufficiently small -- $\mathcal{O}(\frac{1}{nL})$ -- step sizes. Yet those bounds appear too pessimistic -- in fact, the predicted performance is generally no better than for full gradient descent -- and do not agree with the empirical observations. In this work, to narrow the gap between the theory and practice of shuffled SGD, we sharpen the focus from general finite sum problems to empirical risk minimization with linear predictors. This allows us to take a primal-dual perspective and interpret shuffled SGD as a primal-dual method with cyclic coordinate updates on the dual side. Leveraging this perspective, we prove fine-grained complexity bounds that depend on the data matrix and are never worse than what is predicted by the existing bounds. Notably, our bounds predict much faster convergence than the existing analyses -- by a factor of the order of $\sqrt{n}$ in some cases. We empirically demonstrate that on common machine learning datasets our bounds are indeed much tighter. We further extend our analysis to nonsmooth convex problems and more general finite-sum problems, with similar improvements.

We consider nonconvex stochastic optimization problems in the asynchronous centralized distributed setup where the communication times from workers to a server can not be ignored, and the computation and communication times are potentially different for all workers. Using an unbiassed compression technique, we develop a new method-Shadowheart SGD-that provably improves the time complexities of all previous centralized methods. Moreover, we show that the time complexity of Shadowheart SGD is optimal in the family of centralized methods with compressed communication. We also consider the bidirectional setup, where broadcasting from the server to the workers is non-negligible, and develop a corresponding method.

Graph clustering, which aims to divide the nodes in the graph into several distinct clusters, is a fundamental and challenging task. In recent years, deep graph clustering methods have been increasingly proposed and achieved promising performance. However, the corresponding survey paper is scarce and it is imminent to make a summary in this field. From this motivation, this paper makes the first comprehensive survey of deep graph clustering. Firstly, the detailed definition of deep graph clustering and the important baseline methods are introduced. Besides, the taxonomy of deep graph clustering methods is proposed based on four different criteria including graph type, network architecture, learning paradigm, and clustering method. In addition, through the careful analysis of the existing works, the challenges and opportunities from five perspectives are summarized. At last, the applications of deep graph clustering in four domains are presented. It is worth mentioning that a collection of state-of-the-art deep graph clustering methods including papers, codes, and datasets is available on GitHub. We hope this work will serve as a quick guide and help researchers to overcome challenges in this vibrant field.

A trustworthy reinforcement learning algorithm should be competent in solving challenging real-world problems, including {robustly} handling uncertainties, satisfying {safety} constraints to avoid catastrophic failures, and {generalizing} to unseen scenarios during deployments. This study aims to overview these main perspectives of trustworthy reinforcement learning considering its intrinsic vulnerabilities on robustness, safety, and generalizability. In particular, we give rigorous formulations, categorize corresponding methodologies, and discuss benchmarks for each perspective. Moreover, we provide an outlook section to spur promising future directions with a brief discussion on extrinsic vulnerabilities considering human feedback. We hope this survey could bring together separate threads of studies together in a unified framework and promote the trustworthiness of reinforcement learning.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

北京阿比特科技有限公司