Existing research on Domain Robustness (DR) suffers from disparate setups, lack of task variety, and scarce research on recent capabilities such as few-shot learning. Furthermore, we claim that the common practice of measuring DR might further obscure the picture. Current research focuses on challenge sets and relies solely on the Source Drop (SD): Using the source in-domain performance as a reference point for degradation. However, the Target Drop (TD), which measures degradation from the target in-domain performance, should be used as a complementary point of view. In this study, we developed a benchmark comprised of seven NLP tasks, including classification, QA, and generation. Our benchmark focuses on natural topical domain shifts and enables measuring both the SD and the TD. Our comprehensive study, involving over 14,000 domain shifts across 18 fine-tuned and few-shot models, shows that both model types suffer from drops upon domain shifts. While fine-tuned models excel in-domain, few-shot LLMs often surpass them cross-domain, showing better robustness. In addition, we found that a large SD can be explained by shifting to a harder domain rather than by a genuine DR challenge. Thus, the TD is a more reliable metric for assessing DR.
Recent advances in unsupervised learning have shown that unsupervised pre-training, followed by fine-tuning, can improve model generalization. However, a rigorous understanding of how the representation function learned on an unlabeled dataset affects the generalization of the fine-tuned model is lacking. Existing theoretical research does not adequately account for the heterogeneity of the distribution and tasks in pre-training and fine-tuning stage. To bridge this gap, this paper introduces a novel theoretical framework that illuminates the critical factor influencing the transferability of knowledge acquired during unsupervised pre-training to the subsequent fine-tuning phase, ultimately affecting the generalization capabilities of the fine-tuned model on downstream tasks. We apply our theoretical framework to analyze generalization bound of two distinct scenarios: Context Encoder pre-training with deep neural networks and Masked Autoencoder pre-training with deep transformers, followed by fine-tuning on a binary classification task. Finally, inspired by our findings, we propose a novel regularization method during pre-training to further enhances the generalization of fine-tuned model. Overall, our results contribute to a better understanding of unsupervised pre-training and fine-tuning paradigm, and can shed light on the design of more effective pre-training algorithms.
Inverse reinforcement learning (IRL) aims to infer an agent's preferences (represented as a reward function $R$) from their behaviour (represented as a policy $\pi$). To do this, we need a behavioural model of how $\pi$ relates to $R$. In the current literature, the most common behavioural models are optimality, Boltzmann-rationality, and causal entropy maximisation. However, the true relationship between a human's preferences and their behaviour is much more complex than any of these behavioural models. This means that the behavioural models are misspecified, which raises the concern that they may lead to systematic errors if applied to real data. In this paper, we analyse how sensitive the IRL problem is to misspecification of the behavioural model. Specifically, we provide necessary and sufficient conditions that completely characterise how the observed data may differ from the assumed behavioural model without incurring an error above a given threshold. In addition to this, we also characterise the conditions under which a behavioural model is robust to small perturbations of the observed policy, and we analyse how robust many behavioural models are to misspecification of their parameter values (such as e.g.\ the discount rate). Our analysis suggests that the IRL problem is highly sensitive to misspecification, in the sense that very mild misspecification can lead to very large errors in the inferred reward function.
Advanced by rich perception and precise execution, robots possess immense potential to provide professional and customized rehabilitation exercises for patients with mobility impairments caused by strokes. Autonomous robotic rehabilitation significantly reduces human workloads in the long and tedious rehabilitation process. However, training a rehabilitation robot is challenging due to the data scarcity issue. This challenge arises from privacy concerns (e.g., the risk of leaking private disease and identity information of patients) during clinical data access and usage. Data from various patients and hospitals cannot be shared for adequate robot training, further compromising rehabilitation safety and limiting implementation scopes. To address this challenge, this work developed a novel federated joint learning (FJL) method to jointly train robots across hospitals. FJL also adopted a long short-term memory network (LSTM)-Transformer learning mechanism to effectively explore the complex tempo-spatial relations among patient mobility conditions and robotic rehabilitation motions. To validate FJL's effectiveness in training a robot network, a clinic-simulation combined experiment was designed. Real rehabilitation exercise data from 200 patients with stroke diseases (upper limb hemiplegia, Parkinson's syndrome, and back pain syndrome) were adopted. Inversely driven by clinical data, 300,000 robotic rehabilitation guidances were simulated. FJL proved to be effective in joint rehabilitation learning, performing 20% - 30% better than baseline methods.
Due to the rapid generation and dissemination of information, large language models (LLMs) quickly run out of date despite enormous development costs. Due to this crucial need to keep models updated, online learning has emerged as a critical necessity when utilizing LLMs for real-world applications. However, given the ever-expanding corpus of unseen documents and the large parameter space of modern LLMs, efficient adaptation is essential. To address these challenges, we propose Memory of Amortized Contexts (MAC), an efficient and effective online adaptation framework for LLMs with strong knowledge retention. We propose an amortized feature extraction and memory-augmentation approach to compress and extract information from new documents into compact modulations stored in a memory bank. When answering questions, our model attends to and extracts relevant knowledge from this memory bank. To learn informative modulations in an efficient manner, we utilize amortization-based meta-learning, which substitutes the optimization process with a single forward pass of the encoder. Subsequently, we learn to choose from and aggregate selected documents into a single modulation by conditioning on the question, allowing us to adapt a frozen language model during test time without requiring further gradient updates. Our experiment demonstrates the superiority of MAC in multiple aspects, including online adaptation performance, time, and memory efficiency. Code is available at: //github.com/jihoontack/MAC.
Investigating the increasingly popular domain of short video consumption, this study focuses on the impact of Opinion Polarization (OP), a significant factor in the digital landscape influencing public opinions and social interactions. We analyze OP's effect on viewers' perceptions and behaviors, finding that traditional feedback metrics like likes and watch time fail to fully capture and measure OP. Addressing this gap, our research utilizes Electroencephalogram (EEG) signals to introduce a novel, non-invasive approach for evaluating neural responses to OP, affecting perception and cognition. Empirical analysis reveals OP's considerable impact on viewers' emotions, evidenced by changes in brain activity. Our findings also highlight the potential of EEG data in predicting exposure to polarized short video content, offering a new perspective on the dynamics of short video consumption and a unique method for quantifying OP's effects.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.