亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We report assumption-free bounds for any contrast between the probabilities of the potential outcome under exposure and non-exposure when the confounders are missing not at random. We assume that the missingness mechanism is outcome-independent. We also report a sensitivity analysis method to complement our bounds.

相關內容

A popular approach to perform inference on a target parameter in the presence of nuisance parameters is to construct estimating equations that are orthogonal to the nuisance parameters, in the sense that their expected first derivative is zero. Such first-order orthogonalization may, however, not suffice when the nuisance parameters are very imprecisely estimated. Leading examples where this is the case are models for panel and network data that feature fixed effects. In this paper, we show how, in the conditional-likelihood setting, estimating equations can be constructed that are orthogonal to any chosen order. Combining these equations with sample splitting yields higher-order bias-corrected estimators of target parameters. In an empirical application we apply our method to a fixed-effect model of team production and obtain estimates of complementarity in production and impacts of counterfactual re-allocations.

Active imaging systems sample the Transient Light Transport Matrix (TLTM) for a scene by sequentially illuminating various positions in this scene using a controllable light source, and then measuring the resulting spatiotemporal light transport with time of flight (ToF) sensors. Time-resolved Non-line-of-sight (NLOS) imaging employs an active imaging system that measures part of the TLTM of an intermediary relay surface, and uses the indirect reflections of light encoded within this TLTM to "see around corners". Such imaging systems have applications in diverse areas such as disaster response, remote surveillance, and autonomous navigation. While existing NLOS imaging systems usually measure a subset of the full TLTM, development of customized gated Single Photon Avalanche Diode (SPAD) arrays \cite{riccardo_fast-gated_2022} has made it feasible to probe the full measurement space. In this work, we demonstrate that the full TLTM on the relay surface can be processed with efficient algorithms to computationally focus and detect our illumination in different parts of the hidden scene, turning the relay surface into a second-order active imaging system. These algorithms allow us to iterate on the measured, first-order TLTM, and extract a \textbf{second order TLTM for surfaces in the hidden scene}. We showcase three applications of TLTMs in NLOS imaging: (1) Scene Relighting with novel illumination, (2) Separation of direct and indirect components of light transport in the hidden scene, and (3) Dual Photography. Additionally, we empirically demonstrate that SPAD arrays enable parallel acquisition of photons, effectively mitigating long acquisition times.

Despite their remarkable capabilities, Large Language Models (LLMs) are prone to generate responses that contradict verifiable facts, i.e., unfaithful hallucination content. Existing efforts generally focus on optimizing model parameters or editing semantic representations, which compromise the internal factual knowledge of target LLMs. In addition, hallucinations typically exhibit multifaceted patterns in downstream tasks, limiting the model's holistic performance across tasks. In this paper, we propose a Comparator-driven Decoding-Time (CDT) framework to alleviate the response hallucination. Firstly, we construct hallucinatory and truthful comparators with multi-task fine-tuning samples. In this case, we present an instruction prototype-guided mixture of experts strategy to enhance the ability of the corresponding comparators to capture different hallucination or truthfulness patterns in distinct task instructions. CDT constrains next-token predictions to factuality-robust distributions by contrasting the logit differences between the target LLMs and these comparators. Systematic experiments on multiple downstream tasks show that our framework can significantly improve the model performance and response factuality.

Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.

This work examines the Conditional Approval Framework for elections involving multiple interdependent issues, specifically focusing on the Conditional Minisum Approval Voting Rule. We first conduct a detailed analysis of the computational complexity of this rule, demonstrating that no approach can significantly outperform the brute-force algorithm under common computational complexity assumptions and various natural input restrictions. In response, we propose two practical restrictions (the first in the literature) that make the problem computationally tractable and show that these restrictions are essentially tight. Overall, this work provides a clear picture of the tractability landscape of the problem, contributing to a comprehensive understanding of the complications introduced by conditional ballots and indicating that conditional approval voting can be applied in practice, albeit under specific conditions.

We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.

Automatic syllable stress detection is a crucial component in Computer-Assisted Language Learning (CALL) systems for language learners. Current stress detection models are typically trained on clean speech, which may not be robust in real-world scenarios where background noise is prevalent. To address this, speech enhancement (SE) models, designed to enhance speech by removing noise, might be employed, but their impact on preserving syllable stress patterns is not well studied. This study examines how different SE models, representing discriminative and generative modeling approaches, affect syllable stress detection under noisy conditions. We assess these models by applying them to speech data with varying signal-to-noise ratios (SNRs) from 0 to 20 dB, and evaluating their effectiveness in maintaining stress patterns. Additionally, we explore different feature sets to determine which ones are most effective for capturing stress patterns amidst noise. To further understand the impact of SE models, a human-based perceptual study is conducted to compare the perceived stress patterns in SE-enhanced speech with those in clean speech, providing insights into how well these models preserve syllable stress as perceived by listeners. Experiments are performed on English speech data from non-native speakers of German and Italian. And the results reveal that the stress detection performance is robust with the generative SE models when heuristic features are used. Also, the observations from the perceptual study are consistent with the stress detection outcomes under all SE models.

We consider the numerical approximation of the stochastic complex Ginzburg-Landau equation with additive noise on the one dimensional torus. The complex nature of the equation means that many of the standard approaches developed for stochastic partial differential equations can not be directly applied. We use an energy approach to prove an existence and uniqueness result as well to obtain moment bounds on the stochastic PDE before introducing our numerical discretization. For such a well studied deterministic equation it is perhaps surprising that its numerical approximation in the stochastic setting has not been considered before. Our method is based on a spectral discretization in space and a Lie-Trotter splitting method in time. We obtain moment bounds for the numerical method before proving our main result: strong convergence on a set of arbitrarily large probability. From this we obtain a result on convergence in probability. We conclude with some numerical experiments that illustrate the effectiveness of our method.

We propose an overview of the decentralized reconfiguration language Concerto-D through its Maude formalization. Concerto-D extends the already published Concerto language. Concerto-D improves on two different parameters compared with related work: the decentralized coordination of numerous local reconfiguration plans which avoid a single point of failure when considering unstable networks such as edge computing, or cyber-physical systems (CPS) for instance; and a mechanized formal semantics of the language with Maude which offers guarantees on the executability of the semantics. Throughout the paper, the Concerto-D language and its semantics are exemplified with a reconfiguration extracted from a real case study on a CPS. We rely on the Maude formal specification language, which is based on rewriting logic, and consequently perfectly suited for describing a concurrent model.

Perturbation-based mechanisms, such as differential privacy, mitigate gradient leakage attacks by introducing noise into the gradients, thereby preventing attackers from reconstructing clients' private data from the leaked gradients. However, can gradient perturbation protection mechanisms truly defend against all gradient leakage attacks? In this paper, we present the first attempt to break the shield of gradient perturbation protection in Federated Learning for the extraction of private information. We focus on common noise distributions, specifically Gaussian and Laplace, and apply our approach to DNN and CNN models. We introduce Mjolnir, a perturbation-resilient gradient leakage attack that is capable of removing perturbations from gradients without requiring additional access to the original model structure or external data. Specifically, we leverage the inherent diffusion properties of gradient perturbation protection to develop a novel diffusion-based gradient denoising model for Mjolnir. By constructing a surrogate client model that captures the structure of perturbed gradients, we obtain crucial gradient data for training the diffusion model. We further utilize the insight that monitoring disturbance levels during the reverse diffusion process can enhance gradient denoising capabilities, allowing Mjolnir to generate gradients that closely approximate the original, unperturbed versions through adaptive sampling steps. Extensive experiments demonstrate that Mjolnir effectively recovers the protected gradients and exposes the Federated Learning process to the threat of gradient leakage, achieving superior performance in gradient denoising and private data recovery.

北京阿比特科技有限公司