With the rapid advancement of large language models (LLMs), recent years have witnessed many promising studies on leveraging LLM-based agents to simulate human social behavior. While prior work has demonstrated significant potential across various domains, much of it has focused on specific scenarios involving a limited number of agents and has lacked the ability to adapt when errors occur during simulation. To overcome these limitations, we propose a novel LLM-agent-based simulation platform called \textit{GenSim}, which: (1) \textbf{Abstracts a set of general functions} to simplify the simulation of customized social scenarios; (2) \textbf{Supports one hundred thousand agents} to better simulate large-scale populations in real-world contexts; (3) \textbf{Incorporates error-correction mechanisms} to ensure more reliable and long-term simulations. To evaluate our platform, we assess both the efficiency of large-scale agent simulations and the effectiveness of the error-correction mechanisms. To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform based on LLM agents, promising to further advance the field of social science.
Recent trends in Generative AI have emerged towards fine-tuning foundational large language models (LLMs) to create domain-specific LLMs for automation and chatbot-like applications. Specialized applications for analytics-heavy domains such as Financial report generation require specific writing styles that comprise compound and creative sentences with minimized hallucinations. In this work, we explore the self-corrective auto-regressive qualities of LLMs to learn creativity in writing styles with minimal prompting. We propose a novel two-stage fine-tuning (FT) strategy wherein in the first stage public domain financial reports are used to train for writing styles while allowing the LLM to hallucinate. In the second stage the examples of hallucinations are manually corrected and further used to fine-tune the LLM. The finally trained LLM learns to generate specific financial report sections using minimal instructions and tabular data inputs while ensuring low fine-tuning costs. Our proposed two-stage fine-tuning boosts the accuracy of financial questions answering by two-folds while reducing hallucinations by over 50%. Also, the fine-tuned model has lower perplexity, improved ROUGE, TER and BLEU scores, higher creativity and knowledge density with lower uncertainty and cross entropy than base LLMs. Thus, the proposed framework can be generalized to train creativity in LLMs by first allowing them to hallucinate.
The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT, offering potential applications extending into specialized engineering modeling, especially physics-based building energy modeling. This paper investigates the innovative integration of large language models with building energy modeling software, focusing specifically on the fusion of ChatGPT with EnergyPlus. A literature review is first conducted to reveal a growing trend of incorporating large language models in engineering modeling, albeit limited research on their application in building energy modeling. We underscore the potential of large language models in addressing building energy modeling challenges and outline potential applications including simulation input generation, simulation output analysis and visualization, conducting error analysis, co-simulation, simulation knowledge extraction and training, and simulation optimization. Three case studies reveal the transformative potential of large language models in automating and optimizing building energy modeling tasks, underscoring the pivotal role of artificial intelligence in advancing sustainable building practices and energy efficiency. The case studies demonstrate that selecting the right large language model techniques is essential to enhance performance and reduce engineering efforts. The findings advocate a multidisciplinary approach in future artificial intelligence research, with implications extending beyond building energy modeling to other specialized engineering modeling.
With the emergence of large-scale Text-to-Image(T2I) models and implicit 3D representations like Neural Radiance Fields (NeRF), many text-driven generative editing methods based on NeRF have appeared. However, the implicit encoding of geometric and textural information poses challenges in accurately locating and controlling objects during editing. Recently, significant advancements have been made in the editing methods of 3D Gaussian Splatting, a real-time rendering technology that relies on explicit representation. However, these methods still suffer from issues including inaccurate localization and limited manipulation over editing. To tackle these challenges, we propose GSEditPro, a novel 3D scene editing framework which allows users to perform various creative and precise editing using text prompts only. Leveraging the explicit nature of the 3D Gaussian distribution, we introduce an attention-based progressive localization module to add semantic labels to each Gaussian during rendering. This enables precise localization on editing areas by classifying Gaussians based on their relevance to the editing prompts derived from cross-attention layers of the T2I model. Furthermore, we present an innovative editing optimization method based on 3D Gaussian Splatting, obtaining stable and refined editing results through the guidance of Score Distillation Sampling and pseudo ground truth. We prove the efficacy of our method through extensive experiments.
With the rapid advancement of large language models (LLMs), foundational models (FMs) have seen significant advancements. Healthcare is one of the most crucial application areas for these FMs, given the significant time and effort required for physicians to analyze large volumes of patient data. Recent efforts have focused on adapting multimodal FMs to the medical domain through techniques like instruction-tuning, leading to the development of medical foundation models (MFMs). However, these approaches typically require large amounts of training data to effectively adapt models to the medical field. Moreover, most existing models are trained on English datasets, limiting their practicality in non-English-speaking regions where healthcare professionals and patients are not always fluent in English. The need for translation introduces additional costs and inefficiencies. To address these challenges, we propose a \textbf{J}apanese \textbf{Radi}ology report generation model enhanced by \textbf{Evo}lutionary optimization of model merging (JRadiEvo). This is the first attempt to extend a non-medical vision-language foundation model to the medical domain through evolutionary optimization of model merging. We successfully created a model that generates accurate Japanese reports from X-ray images using only 50 translated samples from publicly available data. This model, developed with highly efficient use of limited data, outperformed leading models from recent research trained on much larger datasets. Additionally, with only 8 billion parameters, this relatively compact foundation model can be deployed locally within hospitals, making it a practical solution for environments where APIs and other external services cannot be used due to strict privacy and security requirements.
The self-attention mechanism distinguishes transformer-based large language models (LLMs) apart from convolutional and recurrent neural networks. Despite the performance improvement, achieving real-time LLM inference on silicon remains challenging due to the extensive use of Softmax in self-attention. In addition to the non-linearity, the low arithmetic intensity significantly limits processing parallelism, especially when working with longer contexts. To address this challenge, we propose Constant Softmax (ConSmax), a software-hardware co-design that serves as an efficient alternative to Softmax. ConSmax utilizes differentiable normalization parameters to eliminate the need for maximum searching and denominator summation in Softmax. This approach enables extensive parallelization while still executing the essential functions of Softmax. Moreover, a scalable ConSmax hardware design with a bitwidth-split look-up table (LUT) can achieve lossless non-linear operations and support mixed-precision computing. Experimental results show that ConSmax achieves a minuscule power consumption of 0.2mW and an area of 0.0008mm^2 at 1250MHz working frequency in 16nm FinFET technology. For open-source contribution, we further implement our design with the OpenROAD toolchain under SkyWater's 130nm CMOS technology. The corresponding power is 2.69mW and the area is 0.007mm^2. ConSmax achieves 3.35x power savings and 2.75x area savings in 16nm technology, and 3.15x power savings and 4.14x area savings with the open-source EDA toolchain. In the meantime, it also maintains comparable accuracy on the GPT-2 model and the WikiText103 dataset. The project is available at //github.com/ReaLLMASIC/ConSmax
Despite extensive pre-training in moral alignment to prevent generating harmful information, large language models (LLMs) remain vulnerable to jailbreak attacks. In this paper, we propose AutoDefense, a multi-agent defense framework that filters harmful responses from LLMs. With the response-filtering mechanism, our framework is robust against different jailbreak attack prompts, and can be used to defend different victim models. AutoDefense assigns different roles to LLM agents and employs them to complete the defense task collaboratively. The division in tasks enhances the overall instruction-following of LLMs and enables the integration of other defense components as tools. With AutoDefense, small open-source LMs can serve as agents and defend larger models against jailbreak attacks. Our experiments show that AutoDefense can effectively defense against different jailbreak attacks, while maintaining the performance at normal user request. For example, we reduce the attack success rate on GPT-3.5 from 55.74% to 7.95% using LLaMA-2-13b with a 3-agent system. Our code and data are publicly available at //github.com/XHMY/AutoDefense.
This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model. This offers key advantages of (1) leveraging spatial knowledge already embedded in LLMs, derived from textual sources like 3D tutorials, and (2) enabling conversational 3D generation and mesh understanding. A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly. To address this, we introduce LLaMA-Mesh, a novel approach that represents the vertex coordinates and face definitions of 3D meshes as plain text, allowing direct integration with LLMs without expanding the vocabulary. We construct a supervised fine-tuning (SFT) dataset enabling pretrained LLMs to (1) generate 3D meshes from text prompts, (2) produce interleaved text and 3D mesh outputs as required, and (3) understand and interpret 3D meshes. Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format, effectively unifying the 3D and text modalities. LLaMA-Mesh achieves mesh generation quality on par with models trained from scratch while maintaining strong text generation performance.
The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.
Recent advancements in large language models(LLMs), such as GPT-4 and GPT-4o, have shown exceptional performance, especially in languages with abundant resources like English, thanks to extensive datasets that ensure robust training. Conversely, these models exhibit limitations when processing under-resourced languages such as Chinese and Korean, where issues including hallucinatory responses remain prevalent. This paper traces the roots of these disparities to the tokenization process inherent to these models. Specifically, it explores how the tokenizers vocabulary, often used to speed up the tokenization process and reduce tokens but constructed independently of the actual model training data, inadequately represents non-English languages. This misrepresentation results in the propagation of under-trained or untrained tokens, which perpetuate biases and pose serious concerns related to data security and ethical standards. We aim to dissect the tokenization mechanics of GPT-4o, illustrating how its simplified token-handling methods amplify these risks and offer strategic solutions to mitigate associated security and ethical issues. Through this study, we emphasize the critical need to rethink tokenization frameworks to foster more equitable and secure AI technologies. The code and data are available at //github.com/yeyimilk/LLMGPT4o
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.