Motivated by computing duplication patterns in sequences, a new fundamental problem called the longest subsequence-repeated subsequence (LSRS) is proposed. Given a sequence $S$ of length $n$, a letter-repeated subsequence is a subsequence of $S$ in the form of $x_1^{d_1}x_2^{d_2}\cdots x_k^{d_k}$ with $x_i$ a subsequence of $S$, $x_j\neq x_{j+1}$ and $d_i\geq 2$ for all $i$ in $[k]$ and $j$ in $[k-1]$. We first present an $O(n^6)$ time algorithm to compute the longest cubic subsequences of all the $O(n^2)$ substrings of $S$, improving the trivial $O(n^7)$ bound. Then, an $O(n^6)$ time algorithm for computing the longest subsequence-repeated subsequence (LSRS) of $S$ is obtained. Finally we focus on two variants of this problem. We first consider the constrained version when $\Sigma$ is unbounded, each letter appears in $S$ at most $d$ times and all the letters in $\Sigma$ must appear in the solution. We show that the problem is NP-hard for $d=4$, via a reduction from a special version of SAT (which is obtained from 3-COLORING). We then show that when each letter appears in $S$ at most $d=3$ times, then the problem is solvable in $O(n^5)$ time.
Penetration testing, an essential component of cybersecurity, allows organizations to proactively identify and remediate vulnerabilities in their systems, thus bolstering their defense mechanisms against potential cyberattacks. One recent advancement in the realm of penetration testing is the utilization of Language Models (LLMs). We explore the intersection of LLMs and penetration testing to gain insight into their capabilities and challenges in the context of privilige escalation. We create an automated Linux privilege-escalation benchmark utilizing local virtual machines. We introduce an LLM-guided privilege-escalation tool designed for evaluating different LLMs and prompt strategies against our benchmark. We analyze the impact of different prompt designs, the benefits of in-context learning, and the advantages of offering high-level guidance to LLMs. We discuss challenging areas for LLMs, including maintaining focus during testing, coping with errors, and finally comparing them with both stochastic parrots as well as with human hackers.
Process discovery algorithms learn process models from executed activity sequences, describing concurrency, causality, and conflict. Concurrent activities require observing multiple permutations, increasing data requirements, especially for processes with concurrent subprocesses such as hierarchical, composite, or distributed processes. While process discovery algorithms traditionally use sequences of activities as input, recently introduced object-centric process discovery algorithms can use graphs of activities as input, encoding partial orders between activities. As such, they contain the concurrency information of many sequences in a single graph. In this paper, we address the research question of reducing process discovery data requirements when using object-centric event logs for process discovery. We classify different real-life processes according to the control-flow complexity within and between subprocesses and introduce an evaluation framework to assess process discovery algorithm quality of traditional and object-centric process discovery based on the sample size. We complement this with a large-scale production process case study. Our results show reduced data requirements, enabling the discovery of large, concurrent processes such as manufacturing with little data, previously infeasible with traditional process discovery. Our findings suggest that object-centric process mining could revolutionize process discovery in various sectors, including manufacturing and supply chains.
Interest in anti-unification, the dual problem of unification, is on the rise due to applications within the field of software analysis and related areas. For example, anti-unification-based techniques have found uses within clone detection and automatic program repair methods. While syntactic forms of anti-unification are enough for many applications, some aspects of software analysis methods are more appropriately modeled by reasoning modulo an equational theory. Thus, extending existing anti-unification methods to deal with important equational theories is the natural step forward. This paper considers anti-unification modulo pure absorption theories, i.e., some operators are associated with a special constant satisfying the axiom $f(x,\varepsilon_f) \approx f(\varepsilon_f,x) \approx \varepsilon_f$. We provide a sound and complete rule-based algorithm for such theories. Furthermore, we show that anti-unification modulo absorption is infinitary. Despite this, our algorithm terminates and produces a finitary algorithmic representation of the minimal complete set of solutions. We also show that the linear variant is finitary.
Neural tangent kernels (NTKs) provide a theoretical regime to analyze the learning and generalization behavior of over-parametrized neural networks. For a supervised learning task, the association between the eigenvectors of the NTK kernel and given data (a concept referred to as alignment in this paper) can govern the rate of convergence of gradient descent, as well as generalization to unseen data. Building upon this concept, we investigate NTKs and alignment in the context of graph neural networks (GNNs), where our analysis reveals that optimizing alignment translates to optimizing the graph representation or the graph shift operator in a GNN. Our results further establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN and these guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data. The theoretical insights drawn from the analysis of NTKs are validated by our experiments focused on a multi-variate time series prediction task for a publicly available dataset. Specifically, they demonstrate that GNNs with cross-covariance as the graph shift operator indeed outperform those that operate on the covariance matrix from only the input data.
The test-time optimization of scene flow - using a coordinate network as a neural prior - has gained popularity due to its simplicity, lack of dataset bias, and state-of-the-art performance. We observe, however, that although coordinate networks capture general motions by implicitly regularizing the scene flow predictions to be spatially smooth, the neural prior by itself is unable to identify the underlying multi-body rigid motions present in real-world data. To address this, we show that multi-body rigidity can be achieved without the cumbersome and brittle strategy of constraining the $SE(3)$ parameters of each rigid body as done in previous works. This is achieved by regularizing the scene flow optimization to encourage isometry in flow predictions for rigid bodies. This strategy enables multi-body rigidity in scene flow while maintaining a continuous flow field, hence allowing dense long-term scene flow integration across a sequence of point clouds. We conduct extensive experiments on real-world datasets and demonstrate that our approach outperforms the state-of-the-art in 3D scene flow and long-term point-wise 4D trajectory prediction. The code is available at: \href{//github.com/kavisha725/MBNSF}{//github.com/kavisha725/MBNSF}.
In recent years, multi-objective optimization (MOO) emerges as a foundational problem underpinning many multi-agent multi-task learning applications. However, existing algorithms in MOO literature remain limited to centralized learning settings, which do not satisfy the distributed nature and data privacy needs of such multi-agent multi-task learning applications. This motivates us to propose a new federated multi-objective learning (FMOL) framework with multiple clients distributively and collaboratively solving an MOO problem while keeping their training data private. Notably, our FMOL framework allows a different set of objective functions across different clients to support a wide range of applications, which advances and generalizes the MOO formulation to the federated learning paradigm for the first time. For this FMOL framework, we propose two new federated multi-objective optimization (FMOO) algorithms called federated multi-gradient descent averaging (FMGDA) and federated stochastic multi-gradient descent averaging (FSMGDA). Both algorithms allow local updates to significantly reduce communication costs, while achieving the {\em same} convergence rates as those of the their algorithmic counterparts in the single-objective federated learning. Our extensive experiments also corroborate the efficacy of our proposed FMOO algorithms.
In many problems, it is desirable to optimize an objective function while imposing constraints on some other aspect of the problem. A Constrained Partially Observable Markov Decision Process (C-POMDP) allows modelling of such problems while subject to transition uncertainty and partial observability. Typically, the constraints in C-POMDPs enforce a threshold on expected cumulative costs starting from an initial state distribution. In this work, we first show that optimal C-POMDP policies may violate Bellman's principle of optimality and thus may exhibit pathological behaviors, which can be undesirable for many applications. To address this drawback, we introduce a new formulation, the Recursively-Constrained POMDP (RC-POMDP), that imposes additional history dependent cost constraints on the C-POMDP. We show that, unlike C-POMDPs, RC-POMDPs always have deterministic optimal policies, and that optimal policies obey Bellman's principle of optimality. We also present a point-based dynamic programming algorithm that synthesizes optimal policies for RC-POMDPs. In our evaluations, we show that policies for RC-POMDPs produce more desirable behavior than policies for C-POMDPs and demonstrate the efficacy of our algorithm across a set of benchmark problems.
In this letter, we address the problem of exploration and metric-semantic mapping of multi-floor GPS-denied indoor environments using Size Weight and Power (SWaP) constrained aerial robots. Most previous work in exploration assumes that robot localization is solved. However, neglecting the state uncertainty of the agent can ultimately lead to cascading errors both in the resulting map and in the state of the agent itself. Furthermore, actions that reduce localization errors may be at direct odds with the exploration task. We propose a framework that balances the efficiency of exploration with actions that reduce the state uncertainty of the agent. In particular, our algorithmic approach for active metric-semantic SLAM is built upon sparse information abstracted from raw problem data, to make it suitable for SWaP-constrained robots. Furthermore, we integrate this framework within a fully autonomous aerial robotic system that achieves autonomous exploration in cluttered, 3D environments. From extensive real-world experiments, we showed that by including Semantic Loop Closure (SLC), we can reduce the robot pose estimation errors by over 90% in translation and approximately 75% in yaw, and the uncertainties in pose estimates and semantic maps by over 70% and 65%, respectively. Although discussed in the context of indoor multi-floor exploration, our system can be used for various other applications, such as infrastructure inspection and precision agriculture where reliable GPS data may not be available.
We focus on learning adversarially robust classifiers under a cost-sensitive scenario, where the potential harm of different classwise adversarial transformations is encoded in a binary cost matrix. Existing methods are either empirical that cannot certify robustness or suffer from inherent scalability issues. In this work, we study whether randomized smoothing, a more scalable robustness certification framework, can be leveraged to certify cost-sensitive robustness. Built upon a notion of cost-sensitive certified radius, we show how to adapt the standard randomized smoothing certification pipeline to produce tight robustness guarantees for any cost matrix. In addition, with fine-grained certified radius optimization schemes specifically designed for different data subgroups, we propose an algorithm to train smoothed classifiers that are optimized for cost-sensitive robustness. Extensive experiments on image benchmarks and a real-world medical dataset demonstrate the superiority of our method in achieving significantly improved performance of certified cost-sensitive robustness while having a negligible impact on overall accuracy.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.