亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Networking · INTERACT · INFORMS · MoDELS ·
2024 年 3 月 27 日

Joint entity and relation extraction is the fundamental task of information extraction, consisting of two subtasks: named entity recognition and relation extraction. However, most existing joint extraction methods suffer from issues of feature confusion or inadequate interaction between the two subtasks. Addressing these challenges, in this work, we propose a Co-Attention network for joint entity and Relation Extraction (CARE). Our approach includes adopting a parallel encoding strategy to learn separate representations for each subtask, aiming to avoid feature overlap or confusion. At the core of our approach is the co-attention module that captures two-way interaction between the two subtasks, allowing the model to leverage entity information for relation prediction and vice versa, thus promoting mutual enhancement. Through extensive experiments on three benchmark datasets for joint entity and relation extraction (NYT, WebNLG, and SciERC), we demonstrate that our proposed model outperforms existing baseline models. Our code will be available at //github.com/kwj0x7f/CARE.

We propose a voting-driven semi-supervised approach to automatically acquire the typical duration of an event and use it as pseudo-labeled data. The human evaluation demonstrates that our pseudo labels exhibit surprisingly high accuracy and balanced coverage. In the temporal commonsense QA task, experimental results show that using only pseudo examples of 400 events, we achieve performance comparable to the existing BERT-based weakly supervised approaches that require a significant amount of training examples. When compared to the RoBERTa baselines, our best approach establishes state-of-the-art performance with a 7% improvement in Exact Match.

The rise of social media platforms has led to an increase in polarised online discussions, especially on political and socio-cultural topics such as elections and climate change. We propose a simple and novel unsupervised method to predict whether the authors of two posts agree or disagree, leveraging user stances about named entities obtained from their posts. We present STEntConv, a model which builds a graph of users and named entities weighted by stance and trains a Signed Graph Convolutional Network (SGCN) to detect disagreement between comment and reply posts. We run experiments and ablation studies and show that including this information improves disagreement detection performance on a dataset of Reddit posts for a range of controversial subreddit topics, without the need for platform-specific features or user history.

This two-part paper studies a point-to-point resonant beam communication (RBCom) system, where two separately deployed retroreflectors are adopted to generate the resonant beam between the transmitter and the receiver, and analyzes the transmission rate of the considered system under both the quasi-static and mobile scenarios. Part I of this paper focuses on the quasi-static scenario where the locations of the transmitter and the receiver are relatively fixed. Specifically, we propose a new information-bearing scheme which adopts a synchronization-based amplitude modulation method to mitigate the echo interference caused by the reflected resonant beam. With this scheme, we show that the quasi-static RBCom channel is equivalent to a Markov channel and can be further simplified as an amplitude-constrained additive white Gaussian noise channel. Moreover, we develop an algorithm that jointly employs the bisection and exhaustive search to maximize its capacity upper and lower bounds. Finally, numerical results validate our analysis. Part II of this paper discusses the performance of the RBCom system under the mobile scenario.

The impressive performance of large language models (LLMs) on code-related tasks has shown the potential of fully automated software development. In light of this, we introduce a new software engineering task, namely Natural Language to code Repository (NL2Repo). This task aims to generate an entire code repository from its natural language requirements. To address this task, we propose a simple yet effective framework CodeS, which decomposes NL2Repo into multiple sub-tasks by a multi-layer sketch. Specifically, CodeS includes three modules: RepoSketcher, FileSketcher, and SketchFiller. RepoSketcher first generates a repository's directory structure for given requirements; FileSketcher then generates a file sketch for each file in the generated structure; SketchFiller finally fills in the details for each function in the generated file sketch. To rigorously assess CodeS on the NL2Repo task, we carry out evaluations through both automated benchmarking and manual feedback analysis. For benchmark-based evaluation, we craft a repository-oriented benchmark, SketchEval, and design an evaluation metric, SketchBLEU. For feedback-based evaluation, we develop a VSCode plugin for CodeS and engage 30 participants in conducting empirical studies. Extensive experiments prove the effectiveness and practicality of CodeS on the NL2Repo task.

While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.

We consider the well-studied dueling bandit problem, where a learner aims to identify near-optimal actions using pairwise comparisons, under the constraint of differential privacy. We consider a general class of utility-based preference matrices for large (potentially unbounded) decision spaces and give the first differentially private dueling bandit algorithm for active learning with user preferences. Our proposed algorithms are computationally efficient with near-optimal performance, both in terms of the private and non-private regret bound. More precisely, we show that when the decision space is of finite size $K$, our proposed algorithm yields order optimal $O\Big(\sum_{i = 2}^K\log\frac{KT}{\Delta_i} + \frac{K}{\epsilon}\Big)$ regret bound for pure $\epsilon$-DP, where $\Delta_i$ denotes the suboptimality gap of the $i$-th arm. We also present a matching lower bound analysis which proves the optimality of our algorithms. Finally, we extend our results to any general decision space in $d$-dimensions with potentially infinite arms and design an $\epsilon$-DP algorithm with regret $\tilde{O} \left( \frac{d^6}{\kappa \epsilon } + \frac{ d\sqrt{T }}{\kappa} \right)$, providing privacy for free when $T \gg d$.

Core computations in Graph Neural Network (GNN) training and inference are often mapped to sparse matrix operations such as sparse-dense matrix multiplication (SpMM). These sparse operations are harder to optimize by manual tuning because their performance depends significantly on the sparsity of input graphs, GNN models, and computing platforms. To address this challenge, we present iSpLib, a PyTorch-based C++ library equipped with auto-tuned sparse operations. iSpLib expedites GNN training with a cache-enabled backpropagation that stores intermediate matrices in local caches. The library offers a user-friendly Python plug-in that allows users to take advantage of our optimized PyTorch operations out-of-the-box for any existing linear algebra-based PyTorch implementation of popular GNNs (Graph Convolution Network, GraphSAGE, Graph Inference Network, etc.) with only two lines of additional code. We demonstrate that iSpLib obtains up to 27x overall training speedup compared to the equivalent PyTorch 2.1.0 and PyTorch Geometric 2.4.0 implementations on the CPU. Our library is publicly available at //github.com/HipGraph/iSpLib (//doi.org/10.5281/zenodo.10806511).

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司