亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate traffic forecasting at intersections governed by intelligent traffic signals is critical for the advancement of an effective intelligent traffic signal control system. However, due to the irregular traffic time series produced by intelligent intersections, the traffic forecasting task becomes much more intractable and imposes three major new challenges: 1) asynchronous spatial dependency, 2) irregular temporal dependency among traffic data, and 3) variable-length sequence to be predicted, which severely impede the performance of current traffic forecasting methods. To this end, we propose an Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer) to predict the traffic states of the lanes entering intelligent intersections in a future time window. Specifically, by linking lanes via a traffic diffusion graph, we first propose an Asynchronous Graph Diffusion Network to model the asynchronous spatial dependency between the time-misaligned traffic state measurements of lanes. After that, to capture the temporal dependency within irregular traffic state sequence, a learnable personalized time encoding is devised to embed the continuous time for each lane. Then we propose a Transformable Time-aware Convolution Network that learns meta-filters to derive time-aware convolution filters with transformable filter sizes for efficient temporal convolution on the irregular sequence. Furthermore, a Semi-Autoregressive Prediction Network consisting of a state evolution unit and a semiautoregressive predictor is designed to effectively and efficiently predict variable-length traffic state sequences. Extensive experiments on two real-world datasets demonstrate the effectiveness of ASeer in six metrics.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Recently, multi-agent collaborative (MAC) perception has been proposed and outperformed the traditional single-agent perception in many applications, such as autonomous driving. However, MAC perception is more vulnerable to adversarial attacks than single-agent perception due to the information exchange. The attacker can easily degrade the performance of a victim agent by sending harmful information from a malicious agent nearby. In this paper, we extend adversarial attacks to an important perception task -- MAC object detection, where generic defenses such as adversarial training are no longer effective against these attacks. More importantly, we propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception that can be deployed by each agent to accurately detect and then remove any potential malicious agent in its local collaboration network. In particular, MADE inspects each agent in the network independently using a semi-supervised anomaly detector based on a double-hypothesis test with the Benjamini-Hochberg procedure to control the false positive rate of the inference. For the two hypothesis tests, we propose a match loss statistic and a collaborative reconstruction loss statistic, respectively, both based on the consistency between the agent to be inspected and the ego agent where our detector is deployed. We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X and show that with the protection of MADE, the drops in the average precision compared with the best-case "oracle" defender against our attack are merely 1.28% and 0.34%, respectively, much lower than 8.92% and 10.00% for adversarial training, respectively.

We consider the max-min fair resource allocation problem. The best-known solutions use either a sequence of optimizations or waterfilling, which only applies to a narrow set of cases. These solutions have become a practical bottleneck in WAN traffic engineering and cluster scheduling, especially at larger problem sizes. We improve both approaches: (1) we show how to convert the optimization sequence into a single fast optimization, and (2) we generalize waterfilling to the multi-path case. We empirically show our new algorithms Pareto-dominate prior techniques: they produce faster, fairer, and more efficient allocations. Some of our allocators also have theoretical guarantees: they trade off a bounded amount of unfairness for faster allocation. We have deployed our allocators in Azure's WAN traffic engineering pipeline, where we preserve solution quality and achieve a roughly $3\times$ speedup.

This paper provides a solution to the problem of safe region formation control with reference velocity tracking for a second-order multi-agent system without velocity measurements. Safe region formation control is a control problem where the agents are expected to attain the desired formation while reaching the target region and simultaneously ensuring collision and obstacle avoidance. To tackle this control problem, we break it down into two distinct objectives: safety and region formation control, to provide a completely distributed algorithm. Region formation control is modeled as a high-level abstract objective, whereas safety and actuator saturation are modeled as a low-level objective designed independently, without any knowledge of the former, and being minimally invasive. Our approach incorporates connectivity preservation, actuator saturation, safety considerations, and lack of velocity measurement from other agents with second-order system dynamics which are important constraints in practical applications. Both internal safety for collision avoidance among agents and external safety for avoiding unsafe regions are ensured using exponential control barrier functions. We provide theoretical results for asymptotic convergence and numerical simulation to show the approach's effectiveness.

The problems of Lasso regression and optimal design of experiments share a critical property: their optimal solutions are typically \emph{sparse}, i.e., only a small fraction of the optimal variables are non-zero. Therefore, the identification of the support of an optimal solution reduces the dimensionality of the problem and can yield a substantial simplification of the calculations. It has recently been shown that linear regression with a \emph{squared} $\ell_1$-norm sparsity-inducing penalty is equivalent to an optimal experimental design problem. In this work, we use this equivalence to derive safe screening rules that can be used to discard inessential samples. Compared to previously existing rules, the new tests are much faster to compute, especially for problems involving a parameter space of high dimension, and can be used dynamically within any iterative solver, with negligible computational overhead. Moreover, we show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $\ell_1$-penalty. This allows the computation of a Bayes $c$-optimal design in a finite number of steps and can be several orders of magnitude faster than standard first-order algorithms. The efficiency of the new screening rules and of the homotopy algorithm are demonstrated on different examples based on real data.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司