The COVID-19 pandemic has stimulated the shift of work and life from the physical to a more digital format. To survive and thrive, companies have integrated more digital-enabled elements into their businesses to facilitate resilience, by avoiding potential close physical contact. Following Design Science Research Methodology (DSRM), this paper builds a workflow management system for contactless digital resilience when customers are purchasing in a store. Customer behavior, in coping with digital resilience against COVID-19, is illustrated and empirically tested, using a derivative model in which the constructs are from classical theories. Data was collected from individual customers via the Internet, and 247 completed questionnaires were examined.
Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, where, and how people move from one place to another, is fundamentally important as such information is the basis for large-scale investment decisions on the nation's multi-modal transportation infrastructure. Recent rise of using passively generated mobile data from mobile devices have raised questions on using such data for capturing the mobility patterns of a population because: 1) there is a great variety of different kinds of mobile data and their respective properties are unknown; and 2) data pre-processing and analysis methods are often not explicitly reported. The high stakes involved with mobility analysis and issues associated with the passively generated mobile data call for mobility analysis (including data, methods and results) to be accessible to all, interoperable across different computing systems, reproducible and reusable by others. In this study, a container system named Mobility Analysis Workflow (MAW) that integrates data, methods and results, is developed. Built upon the containerization technology, MAW allows its users to easily create, configure, modify, execute and share their methods and results in the form of Docker containers. Tools for operationalizing MAW are also developed and made publicly available on GitHub. One use case of MAW is the comparative analysis for the impacts of different pre-processing and mobility analysis methods on inferred mobility patterns. This study finds that different pre-processing and analysis methods do have impacts on the resulting mobility patterns. The creation of MAW and a better understanding of the relationship between data, methods and resulting mobility patterns as facilitated by MAW represent an important first step toward promoting reproducibility and reusability in mobility analysis with passively-generated data.
Large scale comparative research into municipal governance is often prohibitively difficult due to a lack of high-quality data. But, recent advances in speech-to-text algorithms and natural language processing has made it possible to more easily collect and analyze data about municipal governments. In this paper, we introduce an open-source platform, the Council Data Project (CDP), to curate novel datasets for research into municipal governance. The contribution of this work is two-fold: 1. We demonstrate that CDP, as an infrastructure, can be used to assemble reliable comparative data on municipal governance; 2. We provide exploratory analysis of three municipalities to show how CDP data can be used to gain insight into how municipal governments perform over time. We conclude by describing future directions for research on and with CDP such as the development of machine learning models for speaker annotation, outline generation, and named entity recognition for improved linked data.
We study approaches for compressing the empirical measure in the context of finite dimensional reproducing kernel Hilbert spaces (RKHSs).In this context, the empirical measure is contained within a natural convex set and can be approximated using convex optimization methods. Such an approximation gives under certain conditions rise to a coreset of data points. A key quantity that controls how large such a coreset has to be is the size of the largest ball around the empirical measure that is contained within the empirical convex set. The bulk of our work is concerned with deriving high probability lower bounds on the size of such a ball under various conditions. We complement this derivation of the lower bound by developing techniques that allow us to apply the compression approach to concrete inference problems such as kernel ridge regression. We conclude with a construction of an infinite dimensional RKHS for which the compression is poor, highlighting some of the difficulties one faces when trying to move to infinite dimensional RKHSs.
The Coronavirus disease 2019 (COVID-19) outbreak quickly spread around the world, resulting in over 240 million infections and 4 million deaths by Oct 2021. While the virus is spreading from person to person silently, fear has also been spreading around the globe. The COVID-19 information from the Australian Government is convincing but not timely or detailed, and there is much information on social networks with both facts and rumors. As software engineers, we have spontaneously and rapidly constructed a COVID-19 information dashboard aggregating reliable information semi-automatically checked from different sources for providing one-stop information sharing site about the latest status in Australia. Inspired by the John Hopkins University COVID-19 Map, our dashboard contains the case statistics, case distribution, government policy, latest news, with interactive visualization. In this paper, we present a participant's in-person observations in which the authors acted as founders of //covid-19-au.com/ serving more than 830K users with 14M page views since March 2020. According to our first-hand experience, we summarize 9 lessons for developers, researchers and instructors. These lessons may inspire the development, research and teaching in software engineer aspects for coping with similar public crises in the future.
We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.
The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.
Blockchain and smart contract technology are novel approaches to data and code management that facilitate trusted computing by allowing for development in a distributed and decentralized manner. Testing smart contracts comes with its own set of challenges which have not yet been fully identified and explored. Although existing tools can identify and discover known vulnerabilities and their interactions on the Ethereum blockchain through random search or symbolic execution, these tools generally do not produce test suites suitable for human oracles. In this paper, we present AGSOLT (Automated Generator of Solidity Test Suites). We demonstrate its efficiency by implementing two search algorithms to automatically generate test suites for stand-alone Solidity smart contracts, taking into account some of the blockchain-specific challenges. To test AGSOLT, we compared a random search algorithm and a genetic algorithm on a set of 36 real-world smart contracts. We found that AGSOLT is capable of achieving high branch coverage with both approaches and even discovered some errors in some of the most popular Solidity smart contracts on Github.
During recent crises like COVID-19, microblogging platforms have become popular channels for affected people seeking assistance such as medical supplies and rescue operations from emergency responders and the public. Despite this common practice, the affordances of microblogging services for help-seeking during crises that needs immediate attention are not well understood. To fill this gap, we analyzed 8K posts from COVID-19 patients or caregivers requesting urgent medical assistance on Weibo, the largest microblogging site in China. Our mixed-methods analyses suggest that existing microblogging functions need to be improved in multiple aspects to sufficiently facilitate help-seeking in emergencies, including capabilities of search and tracking requests, ease of use, and privacy protection. We also find that people tend to stick to certain well-established functions for publishing requests, even after better alternatives emerge. These findings have implications for designing microblogging tools to better support help requesting and responding during crises.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.