Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a scalable quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models. Contrary to Bayesian modeling for IV, our approach does not require additional assumptions on the data generating process, and leads to a scalable approximate inference algorithm with time cost comparable to the corresponding point estimation methods. Our algorithm can be further extended to work with neural network models. We analyze the theoretical properties of the proposed quasi-posterior, and demonstrate through empirical evaluation the competitive performance of our method.
We characterize the complete joint posterior distribution over spatially-varying basal traction and and ice softness parameters of an ice sheet model from observations of surface speed by using stochastic variational inference combined with natural gradient descent to find an approximating variational distribution. By placing a Gaussian process prior over the parameters and casting the problem in terms of eigenfunctions of a kernel, we gain substantial control over prior assumptions on parameter smoothness and length scale, while also rendering the inference tractable. In a synthetic example, we find that this method recovers known parameters and accounts for mutual indeterminacy, both of which can influence observed surface speed. In an application to Helheim Glacier in Southeast Greenland, we show that our method scales to glacier-sized problems. We find that posterior uncertainty in regions of slow flow is high regardless of the choice of observational noise model.
In this paper we consider the linear regression model $Y =S X+\varepsilon $ with functional regressors and responses. We develop new inference tools to quantify deviations of the true slope $S$ from a hypothesized operator $S_0$ with respect to the Hilbert--Schmidt norm $\| S- S_0\|^2$, as well as the prediction error $\mathbb{E} \| S X - S_0 X \|^2$. Our analysis is applicable to functional time series and based on asymptotically pivotal statistics. This makes it particularly user friendly, because it avoids the choice of tuning parameters inherent in long-run variance estimation or bootstrap of dependent data. We also discuss two sample problems as well as change point detection. Finite sample properties are investigated by means of a simulation study.\\ Mathematically our approach is based on a sequential version of the popular spectral cut-off estimator $\hat S_N$ for $S$. It is well-known that the $L^2$-minimax rates in the functional regression model, both in estimation and prediction, are substantially slower than $1/\sqrt{N}$ (where $N$ denotes the sample size) and that standard estimators for $S$ do not converge weakly to non-degenerate limits. However, we demonstrate that simple plug-in estimators - such as $\| \hat S_N - S_0 \|^2$ for $\| S - S_0 \|^2$ - are $\sqrt{N}$-consistent and its sequential versions satisfy weak invariance principles. These results are based on the smoothing effect of $L^2$-norms and established by a new proof-technique, the {\it smoothness shift}, which has potential applications in other statistical inverse problems.
In this paper we present a general framework for estimating regression models subject to a user-defined level of fairness. We enforce fairness as a model selection step in which we choose the value of a ridge penalty to control the effect of sensitive attributes. We then estimate the parameters of the model conditional on the chosen penalty value. Our proposal is mathematically simple, with a solution that is partly in closed form, and produces estimates of the regression coefficients that are intuitive to interpret as a function of the level of fairness. Furthermore, it is easily extended to generalised linear models, kernelised regression models and other penalties; and it can accommodate multiple definitions of fairness. We compare our approach with the regression model from Komiyama et al. (2018), which implements a provably-optimal linear regression model; and with the fair models from Zafar et al. (2019). We evaluate these approaches empirically on six different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy for the same level of fairness. In addition, we highlight a source of bias in the original experimental evaluation in Komiyama et al. (2018).
Random graph models are used to describe the complex structure of real-world networks in diverse fields of knowledge. Studying their behavior and fitting properties are still critical challenges, that in general, require model specific techniques. An important line of research is to develop generic methods able to fit and select the best model among a collection. Approaches based on spectral density (i.e., distribution of the graph adjacency matrix eigenvalues) are appealing for that purpose: they apply to different random graph models. Also, they can benefit from the theoretical background of random matrix theory. This work investigates the convergence properties of model fitting procedures based on the graph spectral density and the corresponding cumulative distribution function. We also review results on the convergence of the spectral density for the most widely used random graph models. Moreover, we explore through simulations the limits of these graph spectral density convergence results, particularly in the case of the block model, where only partial results have been established.
In this paper we present a new static data type inference algorithm for logic programming. Without the need of declaring types for predicates, our algorithm is able to automatically assign types to predicates which, in most cases, correspond to the data types processed by their intended meaning. The algorithm is also able to infer types given data type definitions similar to data definitions in Haskell and, in this case, the inferred types are more informative in general. We present the type inference algorithm, prove some properties and finally, we evaluate our approach on example programs that deal with different data structures.
Epidemiological forecasts are beset by uncertainties about the underlying epidemiological processes, and the surveillance process through which data are acquired. We present a Bayesian inference methodology that quantifies these uncertainties, for epidemics that are modelled by (possibly) non-stationary, continuous-time, Markov population processes. The efficiency of the method derives from a functional central limit theorem approximation of the likelihood, valid for large populations. We demonstrate the methodology by analysing the early stages of the COVID-19 pandemic in the UK, based on age-structured data for the number of deaths. This includes maximum a posteriori estimates, MCMC sampling of the posterior, computation of the model evidence, and the determination of parameter sensitivities via the Fisher information matrix. Our methodology is implemented in PyRoss, an open-source platform for analysis of epidemiological compartment models.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Generative models (GMs) such as Generative Adversary Network (GAN) and Variational Auto-Encoder (VAE) have thrived these years and achieved high quality results in generating new samples. Especially in Computer Vision, GMs have been used in image inpainting, denoising and completion, which can be treated as the inference from observed pixels to corrupted pixels. However, images are hierarchically structured which are quite different from many real-world inference scenarios with non-hierarchical features. These inference scenarios contain heterogeneous stochastic variables and irregular mutual dependences. Traditionally they are modeled by Bayesian Network (BN). However, the learning and inference of BN model are NP-hard thus the number of stochastic variables in BN is highly constrained. In this paper, we adapt typical GMs to enable heterogeneous learning and inference in polynomial time.We also propose an extended autoregressive (EAR) model and an EAR with adversary loss (EARA) model and give theoretical results on their effectiveness. Experiments on several BN datasets show that our proposed EAR model achieves the best performance in most cases compared to other GMs. Except for black box analysis, we've also done a serial of experiments on Markov border inference of GMs for white box analysis and give theoretical results.
Amortized inference has led to efficient approximate inference for large datasets. The quality of posterior inference is largely determined by two factors: a) the ability of the variational distribution to model the true posterior and b) the capacity of the recognition network to generalize inference over all datapoints. We analyze approximate inference in variational autoencoders in terms of these factors. We find that suboptimal inference is often due to amortizing inference rather than the limited complexity of the approximating distribution. We show that this is due partly to the generator learning to accommodate the choice of approximation. Furthermore, we show that the parameters used to increase the expressiveness of the approximation play a role in generalizing inference rather than simply improving the complexity of the approximation.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.