亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the prevalence of pre-training-fine-tuning paradigm, how to efficiently adapt the pre-trained model to the downstream tasks has been an intriguing issue. Parameter-Efficient Fine-Tuning (PEFT) methods have been proposed for low-cost adaptation, including Adapters, Bia-only, and the recently widely used Low-Rank Adaptation. Although these methods have demonstrated their effectiveness to some extent and have been widely applied, the underlying principles are still unclear. In this paper, we reveal the transition of loss landscape in the downstream domain from random initialization to pre-trained initialization, that is, from low-amplitude oscillation to high-amplitude oscillation. The parameter gradients exhibit a property akin to sparsity, where a small fraction of components dominate the total gradient norm, for instance, 1% of the components account for 99% of the gradient. This property ensures that the pre-trained model can easily find a flat minimizer which guarantees the model's ability to generalize even with a low number of trainable parameters. Based on this, we propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT), and validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning. The code is accessible at //github.com/song-wx/SIFT/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Networking · Processing(編程語言) · Cognition · 有偏 ·
2024 年 2 月 6 日

Humans possess a remarkable capacity to recognize and manipulate abstract structure, which is especially apparent in the domain of geometry. Recent research in cognitive science suggests neural networks do not share this capacity, concluding that human geometric abilities come from discrete symbolic structure in human mental representations. However, progress in artificial intelligence (AI) suggests that neural networks begin to demonstrate more human-like reasoning after scaling up standard architectures in both model size and amount of training data. In this study, we revisit empirical results in cognitive science on geometric visual processing and identify three key biases in geometric visual processing: a sensitivity towards complexity, regularity, and the perception of parts and relations. We test tasks from the literature that probe these biases in humans and find that large pre-trained neural network models used in AI demonstrate more human-like abstract geometric processing.

Software Engineering (SE) Pre-trained Language Models (PLMs), such as CodeBERT, are pre-trained on large code corpora, and their learned knowledge has shown success in transferring into downstream tasks (e.g., code clone detection) through the fine-tuning of PLMs. In Natural Language Processing (NLP), an alternative in transferring the knowledge of PLMs is explored through the use of adapter, a compact and parameter efficient module that is inserted into a PLM. Although the use of adapters has shown promising results in many NLP-based downstream tasks, their application and exploration in SE-based downstream tasks are limited. Here, we study the knowledge transfer using adapters on multiple down-stream tasks including cloze test, code clone detection, and code summarization. These adapters are trained on code corpora and are inserted into a PLM that is pre-trained on English corpora or code corpora. We called these PLMs as NL-PLM and C-PLM, respectively. We observed an improvement in results using NL-PLM over a PLM that does not have adapters, and this suggested that adapters can transfer and utilize useful knowledge from NL-PLM to SE tasks. The results are sometimes on par with or exceed the results of C-PLM; while being more efficient in terms of the number of parameters and training time. Interestingly, adapters inserted into a C-PLM generally yield better results than a traditional fine-tuned C-PLM. Our results open new directions to build more compact models for SE tasks.

We investigated the human capacity to acquire multiple visuomotor mappings for de novo skills. Using a grid navigation paradigm, we tested whether contextual cues implemented as different "grid worlds", allow participants to learn two distinct key-mappings more efficiently. Our results indicate that when contextual information is provided, task performance is significantly better. The same held true for meta-reinforcement learning agents that differed in whether or not they receive contextual information when performing the task. We evaluated their accuracy in predicting human performance in the task and analyzed their internal representations. The results indicate that contextual cues allow the formation of separate representations in space and time when using different visuomotor mappings, whereas the absence of them favors sharing one representation. While both strategies can allow learning of multiple visuomotor mappings, we showed contextual cues provide a computational advantage in terms of how many mappings can be learned.

When training predictive models on data with missing entries, the most widely used and versatile approach is a pipeline technique where we first impute missing entries and then compute predictions. In this paper, we view prediction with missing data as a two-stage adaptive optimization problem and propose a new class of models, adaptive linear regression models, where the regression coefficients adapt to the set of observed features. We show that some adaptive linear regression models are equivalent to learning an imputation rule and a downstream linear regression model simultaneously instead of sequentially. We leverage this joint-impute-then-regress interpretation to generalize our framework to non-linear models. In settings where data is strongly not missing at random, our methods achieve a 2-10% improvement in out-of-sample accuracy.

Implementing fine-grained emotion control is crucial for emotion generation tasks because it enhances the expressive capability of the generative model, allowing it to accurately and comprehensively capture and express various nuanced emotional states, thereby improving the emotional quality and personalization of generated content. Generating fine-grained facial animations that accurately portray emotional expressions using only a portrait and an audio recording presents a challenge. In order to address this challenge, we propose a visual attribute-guided audio decoupler. This enables the obtention of content vectors solely related to the audio content, enhancing the stability of subsequent lip movement coefficient predictions. To achieve more precise emotional expression, we introduce a fine-grained emotion coefficient prediction module. Additionally, we propose an emotion intensity control method using a fine-grained emotion matrix. Through these, effective control over emotional expression in the generated videos and finer classification of emotion intensity are accomplished. Subsequently, a series of 3DMM coefficient generation networks are designed to predict 3D coefficients, followed by the utilization of a rendering network to generate the final video. Our experimental results demonstrate that our proposed method, EmoSpeaker, outperforms existing emotional talking face generation methods in terms of expression variation and lip synchronization. Project page: //peterfanfan.github.io/EmoSpeaker/

Loss spikes often occur during pre-training of large language models. The spikes degrade the performance of large language models and sometimes ruin the pre-training. Since the pre-training needs a vast computational budget, we should avoid such spikes. To investigate the cause of loss spikes, we focus on gradients of internal layers. Through theoretical analyses, we reveal two causes of the exploding gradients, and provide requirements to prevent the explosion. In addition, we propose a method to satisfy the requirements by combining the initialization method and a simple modification to embeddings. We conduct various experiments to verify our theoretical analyses empirically. Experimental results indicate that the combination is effective in preventing spikes during pre-training.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

北京阿比特科技有限公司