亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastic Rising Bandits is a setting in which the values of the expected rewards of the available options increase every time they are selected. This framework models a wide range of scenarios in which the available options are learning entities whose performance improves over time. In this paper, we focus on the Best Arm Identification (BAI) problem for the stochastic rested rising bandits. In this scenario, we are asked, given a fixed budget of rounds, to provide a recommendation about the best option at the end of the selection process. We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE, which resorts to a UCB-like approach, and R-SR, which employs a successive reject procedure. We show that they provide guarantees on the probability of properly identifying the optimal option at the end of the learning process. Finally, we numerically validate the proposed algorithms in synthetic and realistic environments and compare them with the currently available BAI strategies.

相關內容

Backward Stochastic Differential Equations (BSDEs) have been widely employed in various areas of social and natural sciences, such as the pricing and hedging of financial derivatives, stochastic optimal control problems, optimal stopping problems and gene expression. Most BSDEs cannot be solved analytically and thus numerical methods must be applied to approximate their solutions. There have been a variety of numerical methods proposed over the past few decades as well as many more currently being developed. For the most part, they exist in a complex and scattered manner with each requiring a variety of assumptions and conditions. The aim of the present work is thus to systematically survey various numerical methods for BSDEs, and in particular, compare and categorize them, for further developments and improvements. To achieve this goal, we focus primarily on the core features of each method based on an extensive collection of 333 references: the main assumptions, the numerical algorithm itself, key convergence properties and advantages and disadvantages, to provide an up-to-date coverage of numerical methods for BSDEs, with insightful summaries of each and a useful comparison and categorization.

Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation (WEE) approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.

Global navigation satellite systems (GNSSs) are implementing security mechanisms: examples are Galileo open service navigation message authentication (OS-NMA) and GPS chips-message robust authentication (CHIMERA). Each of these mechanisms operates in a single band. However, nowadays, even commercial GNSS receivers typically compute the position, velocity, and time (PVT) solution using multiple constellations and signals from multiple bands at once, significantly improving both accuracy and availability. Hence, cross-authentication checks have been proposed, based on the PVT obtained from the mixture of authenticated and non-authenticated signals. In this paper, first, we formalize the models for the cross-authentication checks. Next, we describe, for each check, a spoofing attack to generate a fake signal leading the victim to a target PVT without notice. We analytically relate the degrees of the freedom of the attacker in manipulating the victim's solution to both the employed security checks and the number of open signals that can be tampered with by the attacker. We test the performance of the considered attack strategies on an experimental dataset. Lastly, we show the limits of the PVT-based GNSS cross-authentication checks, where both authenticated and non-authenticated signals are used.

Polypharmacy, most often defined as the simultaneous consumption of five or more drugs at once, is a prevalent phenomenon in the older population. Some of these polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization. Considering the combinatorial nature of the problem as well as the size of claims database and the cost to compute an exact association measure for a given drug combination, it is impossible to investigate every possible combination of drugs. Therefore, we propose to optimize the search for potentially inappropriate polypharmacies (PIPs). To this end, we propose the OptimNeuralTS strategy, based on Neural Thompson Sampling and differential evolution, to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes. We benchmark our method using two datasets generated by an internally developed simulator of polypharmacy data containing 500 drugs and 100 000 distinct combinations. Empirically, our method can detect up to 72% of PIPs while maintaining an average precision score of 99% using 30 000 time steps.

Problems with solutions represented by permutations are very prominent in combinatorial optimization. Thus, in recent decades, a number of evolutionary algorithms have been proposed to solve them, and among them, those based on probability models have received much attention. In that sense, most efforts have focused on introducing algorithms that are suited for solving ordering/ranking nature problems. However, when it comes to proposing probability-based evolutionary algorithms for assignment problems, the works have not gone beyond proposing simple and in most cases univariate models. In this paper, we explore the use of Doubly Stochastic Matrices (DSM) for optimizing matching and assignment nature permutation problems. To that end, we explore some learning and sampling methods to efficiently incorporate DSMs within the picture of evolutionary algorithms. Specifically, we adopt the framework of estimation of distribution algorithms and compare DSMs to some existing proposals for permutation problems. Conducted preliminary experiments on instances of the quadratic assignment problem validate this line of research and show that DSMs may obtain very competitive results, while computational cost issues still need to be further investigated.

Complete verification of deep neural networks (DNNs) can exactly determine whether the DNN satisfies a desired trustworthy property (e.g., robustness, fairness) on an infinite set of inputs or not. Despite the tremendous progress to improve the scalability of complete verifiers over the years on individual DNNs, they are inherently inefficient when a deployed DNN is updated to improve its inference speed or accuracy. The inefficiency is because the expensive verifier needs to be run from scratch on the updated DNN. To improve efficiency, we propose a new, general framework for incremental and complete DNN verification based on the design of novel theory, data structure, and algorithms. Our contributions implemented in a tool named IVAN yield an overall geometric mean speedup of 2.4x for verifying challenging MNIST and CIFAR10 classifiers and a geometric mean speedup of 3.8x for the ACAS-XU classifiers over the state-of-the-art baselines.

The stochastic approximation (SA) algorithm is a widely used probabilistic method for finding a zero or a fixed point of a vector-valued funtion, when only noisy measurements of the function are available. In the literature to date, one makes a distinction between ``synchronous'' updating, whereby every component of the current guess is updated at each time, and ``asynchronous'' updating, whereby only one component is updated. In this paper, we study an intermediate situation that we call ``batch asynchronous stochastic approximation'' (BASA), in which, at each time instant, \textit{some but not all} components of the current estimated solution are updated. BASA allows the user to trade off memory requirements against time complexity. We develop a general methodology for proving that such algorithms converge to the fixed point of the map under study. These convergence proofs make use of weaker hypotheses than existing results. Specifically, existing convergence proofs require that the measurement noise is a zero-mean i.i.d\ sequence or a martingale difference sequence. In the present paper, we permit biased measurements, that is, measurement noises that have nonzero conditional mean. Also, all convergence results to date assume that the stochastic step sizes satisfy a probabilistic analog of the well-known Robbins-Monro conditions. We replace this assumption by a purely deterministic condition on the irreducibility of the underlying Markov processes. As specific applications to Reinforcement Learning, we analyze the temporal difference algorithm $TD(\lambda)$ for value iteration, and the $Q$-learning algorithm for finding the optimal action-value function. In both cases, we establish the convergence of these algorithms, under milder conditions than in the existing literature.

The paper discusses a statistical problem related to testing for differences between two sparse networks with community structures. The community-wise edge probability matrices have entries of order $O(n^{-1}/\log n)$, where $n$ represents the size of the network. The authors propose a test statistic that combines a method proposed by Wu et al. \cite{WuTwoSampleSBM2022} and a resampling process. They derive the asymptotic null distribution of the test statistic and provide a guarantee of asymptotic power against the alternative hypothesis. To evaluate the performance of the proposed test statistic, the authors conduct simulations and provide real data examples. The results indicate that the proposed test statistic performs well in practice.

Deriving strategies for multiple agents under adversarial scenarios poses a significant challenge in attaining both optimality and efficiency. In this paper, we propose an efficient defense strategy for cooperative defense against a group of attackers in a convex environment. The defenders aim to minimize the total number of attackers that successfully enter the target set without prior knowledge of the attacker's strategy. Our approach involves a two-scale method that decomposes the problem into coordination against a single attacker and assigning defenders to attackers. We first develop a coordination strategy for multiple defenders against a single attacker, implementing online convex programming. This results in the maximum defense-winning region of initial joint states from which the defender can successfully defend against a single attacker. We then propose an allocation algorithm that significantly reduces computational effort required to solve the induced integer linear programming problem. The allocation guarantees defense performance enhancement as the game progresses. We perform various simulations to verify the efficiency of our algorithm compared to the state-of-the-art approaches, including the one using the Gazabo platform with Robot Operating System.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司