A fast and flexible $k$NN procedure is developed for dealing with a semiparametric functional regression model involving both partial-linear and single-index components. Rates of uniform consistency are presented. Simulated experiments highlight the advantages of the $k$NN procedure. A real data analysis is also shown.
We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space-time Poincar\'e inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.
An integrated Equation of State (EOS) and strength/pore-crush/damage model framework is provided for modeling near to source (near-field) ground-shock response, where large deformations and pressures necessitate coupling EOS with pressure-dependent plastic yield and damage. Nonlinear pressure-dependence of strength up to high-pressures is combined with a Modified Cam-Clay-like cap-plasticity model in a way to allow degradation of strength from pore-crush damage, what we call the "Yp-Cap" model. Nonlinear hardening under compaction allows modeling the crush-out of pores in combination with a fully saturated EOS, i.e., for modeling partially saturated ground-shock response, where air-filled voids crush. Attention is given to algorithmic clarity and efficiency of the provided model, and the model is employed in example numerical simulations, including finite element simulations of underground explosions to exemplify its robustness and utility.
Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.
The minimum covariance determinant (MCD) estimator is a popular method for robustly estimating the mean and covariance of multivariate data. We extend the MCD to the setting where the observations are matrices rather than vectors and introduce the matrix minimum covariance determinant (MMCD) estimators for robust parameter estimation. These estimators hold equivariance properties, achieve a high breakdown point, and are consistent under elliptical matrix-variate distributions. We have also developed an efficient algorithm with convergence guarantees to compute the MMCD estimators. Using the MMCD estimators, we can compute robust Mahalanobis distances that can be used for outlier detection. Those distances can be decomposed into outlyingness contributions from each cell, row, or column of a matrix-variate observation using Shapley values, a concept for outlier explanation recently introduced in the multivariate setting. Simulations and examples reveal the excellent properties and usefulness of the robust estimators.
In order to compute the Fourier transform of a function $f$ on the real line numerically, one samples $f$ on a grid and then takes the discrete Fourier transform. We derive exact error estimates for this procedure in terms of the decay and smoothness of $f$. The analysis provides a new recipe of how to relate the number of samples, the sampling interval, and the grid size.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
Multiphysics simulations frequently require transferring solution fields between subproblems with non-matching spatial discretizations, typically using interpolation techniques. Standard methods are usually based on measuring the closeness between points by means of the Euclidean distance, which does not account for curvature, cuts, cavities or other non-trivial geometrical or topological features of the domain. This may lead to spurious oscillations in the interpolant in proximity to these features. To overcome this issue, we propose a modification to rescaled localized radial basis function (RL-RBF) interpolation to account for the geometry of the interpolation domain, by yielding conformity and fidelity to geometrical and topological features. The proposed method, referred to as RL-RBF-G, relies on measuring the geodesic distance between data points. RL-RBF-G removes spurious oscillations appearing in the RL-RBF interpolant, resulting in increased accuracy in domains with complex geometries. We demonstrate the effectiveness of RL-RBF-G interpolation through a convergence study in an idealized setting. Furthermore, we discuss the algorithmic aspects and the implementation of RL-RBF-G interpolation in a distributed-memory parallel framework, and present the results of a strong scalability test yielding nearly ideal results. Finally, we show the effectiveness of RL-RBF-G interpolation in multiphysics simulations by considering an application to a whole-heart cardiac electromecanics model.
A component-splitting method is proposed to improve convergence characteristics for implicit time integration of compressible multicomponent reactive flows. The characteristic decomposition of flux jacobian of multicomponent Navier-Stokes equations yields a large sparse eigensystem, presenting challenges of slow convergence and high computational costs for implicit methods. To addresses this issue, the component-splitting method segregates the implicit operator into two parts: one for the flow equations (density/momentum/energy) and the other for the component equations. Each part's implicit operator employs flux-vector splitting based on their respective spectral radii to achieve accelerated convergence. This approach improves the computational efficiency of implicit iteration, mitigating the quadratic increase in time cost with the number of species. Two consistence corrections are developed to reduce the introduced component-splitting error and ensure the numerical consistency of mass fraction. Importantly, the impact of component-splitting method on accuracy is minimal as the residual approaches convergence. The accuracy, efficiency, and robustness of component-splitting method are thoroughly investigated and compared with the coupled implicit scheme through several numerical cases involving thermo-chemical nonequilibrium hypersonic flows. The results demonstrate that the component-splitting method decreases the required number of iteration steps for convergence of residual and wall heat flux, decreases the computation time per iteration step, and diminishes the residual to lower magnitude. The acceleration efficiency is enhanced with increases in CFL number and number of species.
Classical-quantum hybrid algorithms have recently garnered significant attention, which are characterized by combining quantum and classical computing protocols to obtain readout from quantum circuits of interest. Recent progress due to Lubasch et al in a 2019 paper provides readout for solutions to the Schrodinger and Inviscid Burgers equations, by making use of a new variational quantum algorithm (VQA) which determines the ground state of a cost function expressed with a superposition of expectation values and variational parameters. In the following, we analyze additional computational prospects in which the VQA can reliably produce solutions to other PDEs that are comparable to solutions that have been previously realized classically, which are characterized with noiseless quantum simulations. To determine the range of nonlinearities that the algorithm can process for other IVPs, we study several PDEs, first beginning with the Navier-Stokes equations and progressing to other equations underlying physical phenomena ranging from electromagnetism, gravitation, and wave propagation, from simulations of the Einstein, Boussniesq-type, Lin-Tsien, Camassa-Holm, Drinfeld-Sokolov-Wilson (DSW), and Hunter-Saxton equations. To formulate optimization routines that the VQA undergoes for numerical approximations of solutions that are obtained as readout from quantum circuits, cost functions corresponding to each PDE are provided in the supplementary section after which simulations results from hundreds of ZGR-QFT ansatzae are generated.
This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.