亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most obstacle avoidance algorithms are only effective in specific environments, and they have low adaptability to some new environments. In this paper, we propose a trajectory learning (TL)-based obstacle avoidance algorithm, which can learn implicit obstacle avoidance mechanism from trajectories generated by general obstacle avoidance algorithms and achieves better adaptability. Specifically, we define a general data structure to describe the obstacle avoidance mechanism. Based on this structure, we transform the learning of the obstacle avoidance algorithm into a multiclass classification problem about the direction selection. Then, we design an artificial neural network (ANN) to fit multiclass classification function through supervised learning and finally obtain the obstacle avoidance mechanism that generates the observed trajectories. Our algorithm can obtain the obstacle avoidance mechanism similar to that demonstrated in the trajectories, and are adaptable to unseen environments. The automatic learning mechanism simplifies modification and debugging of obstacle avoidance algorithms in applications. Simulation results demonstrate that the proposed algorithm can learn obstacle avoidance strategy from trajectories and achieve better adaptability.

相關內容

The recent development of deep learning combined with compressed sensing enables fast reconstruction of undersampled MR images and has achieved state-of-the-art performance for Cartesian k-space trajectories. However, non-Cartesian trajectories such as the radial trajectory need to be transformed onto a Cartesian grid in each iteration of the network training, slowing down the training process and posing inconvenience and delay during training. Multiple iterations of nonuniform Fourier transform in the networks offset the deep learning advantage of fast inference. Current approaches typically either work on image-to-image networks or grid the non-Cartesian trajectories before the network training to avoid the repeated gridding process. However, the image-to-image networks cannot ensure the k-space data consistency in the reconstructed images and the pre-processing of non-Cartesian k-space leads to gridding errors which cannot be compensated by the network training. Inspired by the Transformer network to handle long-range dependencies in sequence transduction tasks, we propose to rearrange the radial spokes to sequential data based on the chronological order of acquisition and use the Transformer to predict unacquired radial spokes from acquired ones. We propose novel data augmentation methods to generate a large amount of training data from a limited number of subjects. The network can be generated to different anatomical structures. Experimental results show superior performance of the proposed framework compared to state-of-the-art deep neural networks.

As an essential element for log analysis, the system kernel-based event can be effectively employed in the hybrid computing environment integrated with cloud, edge, and endpoint for intelligent threat detection. However, the issues of massiveness, heterogeneity, and semantic redundancy have become the biggest challenges in event-based security analysis. Unfortunately, there is no comprehensive tool to collect and analyze its kernel logs for the widely used OS Windows. This paper proposes a kernel-based event log collector named Kellect, a multi-thread tool built on ETW(events tracing for Windwos). Kellect can provide very compressed but most valuable kernel event data for general-purpose analysis on software anomaly detection. Experimental results in real-world show that Kellect can collect kernel event logs generated from FileIO, Process, Thread, Images, Register, and Network, with efficient and lossless. The total performance is three times higher than that of existing tools. The CPU cost stays only at around 1%, while the memory consumption is less than 50MB. As an important application case, the data collected by Kellect is proved to be utilized to build proper model to detect APT after transformed into provenance graphs with complete semantics. At last, a large experiments for the full techniques from ATT&CK are conducted, and the full relevant log dataset is collected using Kellect. To our best knowledge, it is the first precise and public benchmark sample dataset for kernel event-based APT detection.

This paper presents a multi-layer motion planning and control architecture for autonomous racing, capable of avoiding static obstacles, performing active overtakes, and reaching velocities above 75 $m/s$. The used offline global trajectory generation and the online model predictive controller are highly based on optimization and dynamic models of the vehicle, where the tires and camber effects are represented in an extended version of the basic Pacejka Magic Formula. The proposed single-track model is identified and validated using multi-body motorsport libraries which allow simulating the vehicle dynamics properly, especially useful when real experimental data are missing. The fundamental regularization terms and constraints of the controller are tuned to reduce the rate of change of the inputs while assuring an acceptable velocity and path tracking. The motion planning strategy consists of a Fren\'et-Frame-based planner which considers a forecast of the opponent produced by a Kalman filter. The planner chooses the collision-free path and velocity profile to be tracked on a 3 seconds horizon to realize different goals such as following and overtaking. The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s^{2}$.

Human motion prediction, which plays a key role in computer vision, generally requires a past motion sequence as input. However, in real applications, a complete and correct past motion sequence can be too expensive to achieve. In this paper, we propose a novel approach to predicting future human motions from a much weaker condition, i.e., a single image, with mixture density networks (MDN) modeling. Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses, which well compensates for the strong stochastic ambiguity aggregated by the single input and human motion uncertainty. In designing the loss function, we further introduce the energy-based formulation to flexibly impose prior losses over the learnable parameters of MDN to maintain motion coherence as well as improve the prediction accuracy by customizing the energy functions. Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition. Extensive experiments on two standard benchmark datasets demonstrate the effectiveness of our method in terms of prediction diversity and accuracy.

We study a new approach to learning energy-based models (EBMs) based on adversarial training (AT). We show that (binary) AT learns a special kind of energy function that models the support of the data distribution, and the learning process is closely related to MCMC-based maximum likelihood learning of EBMs. We further propose improved techniques for generative modeling with AT, and demonstrate that this new approach is capable of generating diverse and realistic images. Aside from having competitive image generation performance to explicit EBMs, the studied approach is stable to train, is well-suited for image translation tasks, and exhibits strong out-of-distribution adversarial robustness. Our results demonstrate the viability of the AT approach to generative modeling, suggesting that AT is a competitive alternative approach to learning EBMs.

Relying on deep supervised or self-supervised learning, previous methods for depth completion from paired single image and sparse depth data have achieved impressive performance in recent years. However, facing a new environment where the test data occurs online and differs from the training data in the RGB image content and depth sparsity, the trained model might suffer severe performance drop. To encourage the trained model to work well in such conditions, we expect it to be capable of adapting to the new environment continuously and effectively. To achieve this, we propose MetaComp. It utilizes the meta-learning technique to simulate adaptation policies during the training phase, and then adapts the model to new environments in a self-supervised manner in testing. Considering that the input is multi-modal data, it would be challenging to adapt a model to variations in two modalities simultaneously, due to significant differences in structure and form of the two modal data. Therefore, we further propose to disentangle the adaptation procedure in the basic meta-learning training into two steps, the first one focusing on the depth sparsity while the second attending to the image content. During testing, we take the same strategy to adapt the model online to new multi-modal data. Experimental results and comprehensive ablations show that our MetaComp is capable of adapting to the depth completion in a new environment effectively and robust to changes in different modalities.

Point cloud video transmission is challenging due to high encoding/decoding complexity, high video bitrate, and low latency requirement. Consequently, conventional adaptive streaming methodologies often find themselves unsatisfactory to meet the requirements in threefold: 1) current algorithms reuse existing quality of experience (QoE) definitions while overlooking the unique features of point cloud video thus failing to provide optimal user experience, 2) most deep learning approaches require long-span data collections to learn sufficiently varied network conditions and result in long training period and capacity occupation, 3) cloud training approaches pose privacy risks caused by leakage of user reported service usage and networking conditions. To overcome the limitations, we present FRAS, the first federated reinforcement learning framework, to the best of our knowledge, for adaptive point cloud video streaming. We define a new QoE model which takes the unique features of point cloud video into account. Each client uses reinforcement learning (RL) to train encoding rate selection with the objective of optimizing the user's QoE under multiple constraints. Then, a federated learning framework is integrated with the RL algorithm to enhance training performance with privacy preservation. Extensive simulations using real point cloud videos and network traces reveal the superiority of the proposed scheme over baseline schemes. We also implement a prototype that demonstrates the performance of FRAS via real-world tests.

Model Predictive Control (MPC) approaches are widely used in robotics, since they allow to compute updated trajectories while the robot is moving. They generally require heuristic references for the tracking terms and proper tuning of parameters of the cost function in order to obtain good performance. When for example, a legged robot has to react to disturbances from the environment (e.g., recover after a push) or track a certain goal with statically unstable gaits, the effectiveness of the algorithm can degrade. In this work we propose a novel optimization-based Reference Generator, named Governor, which exploits a Linear Inverted Pendulum model to compute reference trajectories for the Center of Mass, while taking into account the possible under-actuation of a gait (e.g. in a trot). The obtained trajectories are used as references for the cost function of the Nonlinear MPC presented in our previous work [1]. We also present a formulation that can guarantee a certain response time to reach a goal, without the need to tune the weights of the cost terms. In addition, foothold locations are corrected to drive the robot towards the goal. We demonstrate the effectiveness of our approach both in simulations and experiments in different scenarios with the Aliengo robot.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

北京阿比特科技有限公司