Let $\Sigma$ be an alphabet. For two strings $X$, $Y$, and a constrained string $P$ over the alphabet $\Sigma$, the constrained longest common subsequence and substring problem for two strings $X$ and $Y$ with respect to $P$ is to find a longest string $Z$ which is a subsequence of $X$, a substring of $Y$, and has $P$ as a subsequence. In this paper, we propose an algorithm for the constrained longest common subsequence and substring problem for two strings with a constrained string.
A Stackelberg Vertex Cover game is played on an undirected graph $\mathcal{G}$ where some of the vertices are under the control of a \emph{leader}. The remaining vertices are assigned a fixed weight. The game is played in two stages. First, the leader chooses prices for the vertices under her control. Afterward, the second player, called \emph{follower}, selects a min weight vertex cover in the resulting weighted graph. That is, the follower selects a subset of vertices $C^*$ such that every edge has at least one endpoint in $C^*$ of minimum weight w.r.t.\ to the fixed weights, and the prices set by the leader. Stackelberg Vertex Cover (StackVC) describes the leader's optimization problem to select prices in the first stage of the game so as to maximize her revenue, which is the cumulative price of all her (priceable) vertices that are contained in the follower's solution. Previous research showed that StackVC is \textsf{NP}-hard on bipartite graphs, but solvable in polynomial time in the special case of bipartite graphs, where all priceable vertices belong to the same side of the bipartition. In this paper, we investigate StackVC on paths and present a dynamic program with linear time and space complexity.
An introductory exposition of the virtual element method (VEM) is provided. The intent is to make this method more accessible to those unfamiliar with VEM. Familiarity with the finite element method for solving 2D linear elasticity problems is assumed. Derivations relevant to successful implementation are covered. Some theory is covered, but the focus here is on implementation and results. Examples are given that illustrate the utility of the method. Numerical results are provided to help researchers implement and verify their own results.
We propose an original approach to investigate the linearity of Gray codes obtained from $\mathbb{Z}_{2^L}$-additive codes by introducing two related binary codes: the associated and concatenated. Once they are defined, one could perform a straightforward analysis of the Schur product between their codewords and determine the linearity of the respective Gray code. This work expands on earlier contributions from the literature, where the linearity was established with respect to the kernel of a code and/or operations on $\mathbb{Z}_{2^L}$. The $\mathbb{Z}_{2^L}$-additive codes we apply the Gray map and check the linearity are the well-known Hadamard, simplex, MacDonald, Kerdock, and Preparata codes. We also present a family of Reed-Muller codes that yield to linear Gray codes and perform a computational verification of our proposed method applied to other $\mathbb{Z}_{2^L}$-additive codes.
We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy over $\mathrm{NP}$. Our main results concern $\mathrm{DP}$, i.e., the second level of this hierarchy: If all sets in $\mathrm{DP}$ have p-optimal proof systems, then all sets in $\mathrm{coDP}$ have p-optimal proof systems. The analogous implication for optimal proof systems fails relative to an oracle. As a consequence, we clarify such implications for all classes $\mathcal{C}$ and $\mathcal{D}$ in the Boolean hierarchy over $\mathrm{NP}$: either we can prove the implication or show that it fails relative to an oracle. Furthermore, we show that the sets $\mathrm{SAT}$ and $\mathrm{TAUT}$ have p-optimal proof systems, if and only if all sets in the Boolean hierarchy over $\mathrm{NP}$ have p-optimal proof systems which is a new characterization of a conjecture studied by Pudl\'ak.
We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. These problems are characterized by the complexity class $\mathsf{FP}^{\mathsf{PSPACE}}$, and include natural $\mathsf{FP}^{\mathsf{PSPACE}}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.
Let $\mathbf S \in \mathbb R^{n \times n}$ satisfy $\|\mathbf 1-\mathbf S\|_2\le\epsilon n$, where $\mathbf 1$ is the all ones matrix and $\|\cdot\|_2$ is the spectral norm. It is well-known that there exists such an $\mathbf S$ with just $O(n/\epsilon^2)$ non-zero entries: we can let $\mathbf S$ be the scaled adjacency matrix of a Ramanujan expander graph. We show that such an $\mathbf S$ yields a $universal$ $sparsifier$ for any positive semidefinite (PSD) matrix. In particular, for any PSD $\mathbf A \in \mathbb{R}^{n\times n}$ with entries bounded in magnitude by $1$, $\|\mathbf A - \mathbf A\circ\mathbf S\|_2 \le \epsilon n$, where $\circ$ denotes the entrywise (Hadamard) product. Our techniques also give universal sparsifiers for non-PSD matrices. In this case, letting $\mathbf S$ be the scaled adjacency matrix of a Ramanujan graph with $\tilde O(n/\epsilon^4)$ edges, we have $\|\mathbf A - \mathbf A \circ \mathbf S \|_2 \le \epsilon \cdot \max(n,\|\mathbf A\|_1)$, where $\|\mathbf A\|_1$ is the nuclear norm. We show that the above bounds for both PSD and non-PSD matrices are tight up to log factors. Since $\mathbf A \circ \mathbf S$ can be constructed deterministically, our result for PSD matrices derandomizes and improves upon known results for randomized matrix sparsification, which require randomly sampling ${O}(\frac{n \log n}{\epsilon^2})$ entries. We also leverage our results to give the first deterministic algorithms for several problems related to singular value approximation that run in faster than matrix multiplication time. Finally, if $\mathbf A \in \{-1,0,1\}^{n \times n}$ is PSD, we show that $\mathbf{\tilde A}$ with $\|\mathbf A - \mathbf{\tilde A}\|_2 \le \epsilon n$ can be obtained by deterministically reading $\tilde O(n/\epsilon)$ entries of $\mathbf A$. This improves the $1/\epsilon$ dependence on our result for general PSD matrices and is near-optimal.
Datasets that pair Knowledge Graphs (KG) and text together (KG-T) can be used to train forward and reverse neural models that generate text from KG and vice versa. However models trained on datasets where KG and text pairs are not equivalent can suffer from more hallucination and poorer recall. In this paper, we verify this empirically by generating datasets with different levels of noise and find that noisier datasets do indeed lead to more hallucination. We argue that the ability of forward and reverse models trained on a dataset to cyclically regenerate source KG or text is a proxy for the equivalence between the KG and the text in the dataset. Using cyclic evaluation we find that manually created WebNLG is much better than automatically created TeKGen and T-REx. Guided by these observations, we construct a new, improved dataset called LAGRANGE using heuristics meant to improve equivalence between KG and text and show the impact of each of the heuristics on cyclic evaluation. We also construct two synthetic datasets using large language models (LLMs), and observe that these are conducive to models that perform significantly well on cyclic generation of text, but less so on cyclic generation of KGs, probably because of a lack of a consistent underlying ontology.
Measuring presence is critical to improving user involvement and performance in Mixed Reality (MR). \emph{Presence}, a crucial aspect of MR, is traditionally gauged using subjective questionnaires, leading to a lack of time-varying responses and susceptibility to user bias. Inspired by the existing literature on the relationship between presence and human performance, the proposed methodology systematically measures a user's reaction time to a visual stimulus as they interact within a manipulated MR environment. We explore the user reaction time as a quantity that can be easily measured using the systemic tools available in modern MR devices. We conducted an exploratory study (N=40) with two experiments designed to alter the users' sense of presence by manipulating \emph{place illusion} and \emph{plausibility illusion}. We found a significant correlation between presence scores and reaction times with a correlation coefficient -0.65, suggesting that users with a higher sense of presence responded more swiftly to stimuli. We develop a model that estimates a user's presence level using the reaction time values with high accuracy of up to 80\%. While our study suggests that reaction time can be used as a measure of presence, further investigation is needed to improve the accuracy of the model.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.