亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The symmetry and geometry of input data are considered to be encoded in the internal data representation inside the neural network, but the specific encoding rule has been less investigated. In this study, we present a systematic method to induce a generalized neural network and its right inverse operator, called the ridgelet transform, from a joint group invariant function on the data-parameter domain. Since the ridgelet transform is an inverse, (1) it can describe the arrangement of parameters for the network to represent a target function, which is understood as the encoding rule, and (2) it implies the universality of the network. Based on the group representation theory, we present a new simple proof of the universality by using Schur's lemma in a unified manner covering a wide class of networks, for example, the original ridgelet transform, formal deep networks, and the dual voice transform. Since traditional universality theorems were demonstrated based on functional analysis, this study sheds light on the group theoretic aspect of the approximation theory, connecting geometric deep learning to abstract harmonic analysis.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Existing federated learning methods have effectively addressed decentralized learning in scenarios involving data privacy and non-IID data. However, in real-world situations, each client dynamically learns new classes, requiring the global model to maintain discriminative capabilities for both new and old classes. To effectively mitigate the effects of catastrophic forgetting and data heterogeneity under low communication costs, we designed a simple and effective method named PLoRA. On the one hand, we adopt prototype learning to learn better feature representations and leverage the heuristic information between prototypes and class features to design a prototype re-weight module to solve the classifier bias caused by data heterogeneity without retraining the classification layer. On the other hand, our approach utilizes a pre-trained model as the backbone and utilizes LoRA to fine-tune with a tiny amount of parameters when learning new classes. Moreover, PLoRA does not rely on similarity-based module selection strategies, thereby further reducing communication overhead. Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly. More importantly, our method exhibits strong robustness and superiority in various scenarios and degrees of data heterogeneity. Our code will be publicly available.

In terms of human-computer interaction, it is becoming more and more important to correctly understand the user's emotional state in a conversation, so the task of multimodal emotion recognition (MER) started to receive more attention. However, existing emotion classification methods usually perform classification only once. Sentences are likely to be misclassified in a single round of classification. Previous work usually ignores the similarities and differences between different morphological features in the fusion process. To address the above issues, we propose a two-stage emotion recognition model based on graph contrastive learning (TS-GCL). First, we encode the original dataset with different preprocessing modalities. Second, a graph contrastive learning (GCL) strategy is introduced for these three modal data with other structures to learn similarities and differences within and between modalities. Finally, we use MLP twice to achieve the final emotion classification. This staged classification method can help the model to better focus on different levels of emotional information, thereby improving the performance of the model. Extensive experiments show that TS-GCL has superior performance on IEMOCAP and MELD datasets compared with previous methods.

In robust optimization problems, the magnitude of perturbations is relatively small. Consequently, solutions within certain regions are less likely to represent the robust optima when perturbations are introduced. Hence, a more efficient search process would benefit from increased opportunities to explore promising regions where global optima or good local optima are situated. In this paper, we introduce a novel robust evolutionary algorithm named the dual-stage robust evolutionary algorithm (DREA) aimed at discovering robust solutions. DREA operates in two stages: the peak-detection stage and the robust solution-searching stage. The primary objective of the peak-detection stage is to identify peaks in the fitness landscape of the original optimization problem. Conversely, the robust solution-searching stage focuses on swiftly identifying the robust optimal solution using information obtained from the peaks discovered in the initial stage. These two stages collectively enable the proposed DREA to efficiently obtain the robust optimal solution for the optimization problem. This approach achieves a balance between solution optimality and robustness by separating the search processes for optimal and robust optimal solutions. Experimental results demonstrate that DREA significantly outperforms five state-of-the-art algorithms across 18 test problems characterized by diverse complexities. Moreover, when evaluated on higher-dimensional robust optimization problems (100-$D$ and 200-$D$), DREA also demonstrates superior performance compared to all five counterpart algorithms.

Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic Unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation is by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gassian mixture model (GMM). We evaluate our approach on well established semantic segmentation datasets and demonstrate it compares favorably against state-of-the-art (SOTA) UDA semantic segmentation methods.

Numerous statistical methods have been developed to explore genomic imprinting and maternal effects, which are causes of parent-of-origin patterns in complex human diseases. However, most of them either only model one of these two confounded epigenetic effects, or make strong yet unrealistic assumptions about the population to avoid over-parameterization. A recent partial likelihood method (LIME) can identify both epigenetic effects based on case-control family data without those assumptions. Theoretical and empirical studies have shown its validity and robustness. However, because LIME obtains parameter estimation by maximizing partial likelihood, it is interesting to compare its efficiency with full likelihood maximizer. To overcome the difficulty in over-parameterization when using full likelihood, in this study we propose a Monte Carlo Expectation Maximization (MCEM) method to detect imprinting and maternal effects jointly. Those unknown mating type probabilities, the nuisance parameters, can be considered as latent variables in EM algorithm. Monte Carlo samples are used to numerically approximate the expectation function that cannot be solved algebraically. Our simulation results show that though this MCEM algorithm takes longer computational time, and can give higher bias in some simulations compared to LIME, it can generally detect both epigenetic effects with higher power and smaller standard error which demonstrates that it can be a good complement of LIME method.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司