亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-trained language models (PLMs) often take advantage of the monolingual and multilingual dataset that is freely available online to acquire general or mixed domain knowledge before deployment into specific tasks. Extra-large PLMs (xLPLMs) are proposed very recently to claim supreme performances over smaller-sized PLMs such as in machine translation (MT) tasks. These xLPLMs include Meta-AI's wmt21-dense-24-wide-en-X (2021) and NLLB (2022). In this work, we examine if xLPLMs are absolutely superior to smaller-sized PLMs in fine-tuning toward domain-specific MTs. We use two different in-domain data of different sizes: commercial automotive in-house data and clinical shared task data from the ClinSpEn2022 challenge at WMT2022. We choose popular Marian Helsinki as smaller sized PLM and two massive-sized Mega-Transformers from Meta-AI as xLPLMs. Our experimental investigation shows that 1) on smaller-sized in-domain commercial automotive data, xLPLM wmt21-dense-24-wide-en-X indeed shows much better evaluation scores using SacreBLEU and hLEPOR metrics than smaller-sized Marian, even though its score increase rate is lower than Marian after fine-tuning; 2) on relatively larger-size well prepared clinical data fine-tuning, the xLPLM NLLB tends to lose its advantage over smaller-sized Marian on two sub-tasks (clinical terms and ontology concepts) using ClinSpEn offered metrics METEOR, COMET, and ROUGE-L, and totally lost to Marian on Task-1 (clinical cases) on all official metrics including SacreBLEU and BLEU; 3) metrics do not always agree with each other on the same tasks using the same model outputs; 4) clinic-Marian ranked No.2 on Task- 1 (via SACREBLEU/BLEU) and Task-3 (via METEOR and ROUGE) among all submissions.

相關內容

Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks, while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL (short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (13-85% cost savings).

In model extraction attacks, adversaries can steal a machine learning model exposed via a public API by repeatedly querying it and adjusting their own model based on obtained predictions. To prevent model stealing, existing defenses focus on detecting malicious queries, truncating, or distorting outputs, thus necessarily introducing a tradeoff between robustness and model utility for legitimate users. Instead, we propose to impede model extraction by requiring users to complete a proof-of-work before they can read the model's predictions. This deters attackers by greatly increasing (even up to 100x) the computational effort needed to leverage query access for model extraction. Since we calibrate the effort required to complete the proof-of-work to each query, this only introduces a slight overhead for regular users (up to 2x). To achieve this, our calibration applies tools from differential privacy to measure the information revealed by a query. Our method requires no modification of the victim model and can be applied by machine learning practitioners to guard their publicly exposed models against being easily stolen.

The image captioning task is typically realized by an auto-regressive method that decodes the text tokens one by one. We present a diffusion-based captioning model, dubbed the name DDCap, to allow more decoding flexibility. Unlike image generation, where the output is continuous and redundant with a fixed length, texts in image captions are categorical and short with varied lengths. Therefore, naively applying the discrete diffusion model to text decoding does not work well, as shown in our experiments. To address the performance gap, we propose several key techniques including best-first inference, concentrated attention mask, text length prediction, and image-free training. On COCO without additional caption pre-training, it achieves a CIDEr score of 117.8, which is +5.0 higher than the auto-regressive baseline with the same architecture in the controlled setting. It also performs +26.8 higher CIDEr score than the auto-regressive baseline (230.3 v.s.203.5) on a caption infilling task. With 4M vision-language pre-training images and the base-sized model, we reach a CIDEr score of 125.1 on COCO, which is competitive to the best well-developed auto-regressive frameworks. The code is available at //github.com/buxiangzhiren/DDCap.

Diffusion-based generative models have demonstrated a capacity for perceptually impressive synthesis, but can they also be great likelihood-based models? We answer this in the affirmative, and introduce a family of diffusion-based generative models that obtain state-of-the-art likelihoods on standard image density estimation benchmarks. Unlike other diffusion-based models, our method allows for efficient optimization of the noise schedule jointly with the rest of the model. We show that the variational lower bound (VLB) simplifies to a remarkably short expression in terms of the signal-to-noise ratio of the diffused data, thereby improving our theoretical understanding of this model class. Using this insight, we prove an equivalence between several models proposed in the literature. In addition, we show that the continuous-time VLB is invariant to the noise schedule, except for the signal-to-noise ratio at its endpoints. This enables us to learn a noise schedule that minimizes the variance of the resulting VLB estimator, leading to faster optimization. Combining these advances with architectural improvements, we obtain state-of-the-art likelihoods on image density estimation benchmarks, outperforming autoregressive models that have dominated these benchmarks for many years, with often significantly faster optimization. In addition, we show how to use the model as part of a bits-back compression scheme, and demonstrate lossless compression rates close to the theoretical optimum. Code is available at //github.com/google-research/vdm .

We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司