亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum absolute value of $p$ on the numerical range of $A$.Our bounds confirm the conjecture that this ratiois less than or equal to $2$. We also give a precise description of these numerical ranges.

相關內容

The notion of an e-value has been recently proposed as a possible alternative to critical regions and p-values in statistical hypothesis testing. In this paper we consider testing the nonparametric hypothesis of symmetry, introduce analogues for e-values of three popular nonparametric tests, define an analogue for e-values of Pitman's asymptotic relative efficiency, and apply it to the three nonparametric tests. We discuss limitations of our simple definition of asymptotic relative efficiency and list directions of further research.

A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.

In this work, a Generalized Finite Difference (GFD) scheme is presented for effectively computing the numerical solution of a parabolic-elliptic system modelling a bacterial strain with density-suppressed motility. The GFD method is a meshless method known for its simplicity for solving non-linear boundary value problems over irregular geometries. The paper first introduces the basic elements of the GFD method, and then an explicit-implicit scheme is derived. The convergence of the method is proven under a bound for the time step, and an algorithm is provided for its computational implementation. Finally, some examples are considered comparing the results obtained with a regular mesh and an irregular cloud of points.

In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.

We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.

Let $\mu$ be a probability measure on $\mathbb{R}^d$ and $\mu_N$ its empirical measure with sample size $N$. We prove a concentration inequality for the optimal transport cost between $\mu$ and $\mu_N$ for radial cost functions with polynomial local growth, that can have superpolynomial global growth. This result generalizes and improves upon estimates of Fournier and Guillin. The proof combines ideas from empirical process theory with known concentration rates for compactly supported $\mu$. By partitioning $\mathbb{R}^d$ into annuli, we infer a global estimate from local estimates on the annuli and conclude that the global estimate can be expressed as a sum of the local estimate and a mean-deviation probability for which efficient bounds are known.

Generating series are crucial in enumerative combinatorics, analytic combinatorics, and combinatorics on words. Though it might seem at first view that generating Dirichlet series are less used in these fields than ordinary and exponential generating series, there are many notable papers where they play a fundamental role, as can be seen in particular in the work of Flajolet and several of his co-authors. In this paper, we study Dirichlet series of integers with missing digits or blocks of digits in some integer base $b$, i.e., where the summation ranges over the integers whose expansions form some language strictly included in the set of all words on the alphabet $\{0, 1, \dots, b-1\}$ that do not begin with a $0$. We show how to unify and extend results proved by Nathanson in 2021 and by K\"ohler and Spilker in 2009. En route, we encounter several sequences from Sloane's On-Line Encyclopedia of Integer Sequences, as well as some famous $q$-automatic sequences or $q$-regular sequences.

In this paper, we provide conditions that hulls of generalized Reed-Solomon (GRS) codes are also GRS codes from algebraic geometry codes. If the conditions are not satisfied, we provide a method of linear algebra to find the bases of hulls of GRS codes and give formulas to compute their dimensions. Besides, we explain that the conditions are too good to be improved by some examples. Moreover, we show self-orthogonal and self-dual GRS codes.

In this note we consider the approximation of the Greeks Delta and Gamma of American-style options through the numerical solution of time-dependent partial differential complementarity problems (PDCPs). This approach is very attractive as it can yield accurate approximations to these Greeks at essentially no additional computational cost during the numerical solution of the PDCP for the pertinent option value function. For the temporal discretization, the Crank-Nicolson method is arguably the most popular method in computational finance. It is well-known, however, that this method can have an undesirable convergence behaviour in the approximation of the Greeks Delta and Gamma for American-style options, even when backward Euler damping (Rannacher smoothing) is employed. In this note we study for the temporal discretization an interesting family of diagonally implicit Runge-Kutta (DIRK) methods together with the two-stage Lobatto IIIC method. Through ample numerical experiments for one- and two-asset American-style options, it is shown that these methods can yield a regular second-order convergence behaviour for the option value as well as for the Greeks Delta and Gamma. A mutual comparison reveals that the DIRK method with suitably chosen parameter $\theta$ is preferable.

In this work we investigate the Weihrauch degree of the problem $\mathsf{DS}$ of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem $\mathsf{BS}$ of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf{DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $\mathsf{DS}$ and $\mathsf{BS}$ by considering $\boldsymbol{\Gamma}$-presented orders, where $\boldsymbol{\Gamma}$ is a Borel pointclass or $\boldsymbol{\Delta}^1_1$, $\boldsymbol{\Sigma}^1_1$, $\boldsymbol{\Pi}^1_1$. We study the obtained $\mathsf{DS}$-hierarchy and $\mathsf{BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.

北京阿比特科技有限公司