亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose VLOGGER, a method for audio-driven human video generation from a single input image of a person, which builds on the success of recent generative diffusion models. Our method consists of 1) a stochastic human-to-3d-motion diffusion model, and 2) a novel diffusion-based architecture that augments text-to-image models with both spatial and temporal controls. This supports the generation of high quality video of variable length, easily controllable through high-level representations of human faces and bodies. In contrast to previous work, our method does not require training for each person, does not rely on face detection and cropping, generates the complete image (not just the face or the lips), and considers a broad spectrum of scenarios (e.g. visible torso or diverse subject identities) that are critical to correctly synthesize humans who communicate. We also curate MENTOR, a new and diverse dataset with 3d pose and expression annotations, one order of magnitude larger than previous ones (800,000 identities) and with dynamic gestures, on which we train and ablate our main technical contributions. VLOGGER outperforms state-of-the-art methods in three public benchmarks, considering image quality, identity preservation and temporal consistency while also generating upper-body gestures. We analyze the performance of VLOGGER with respect to multiple diversity metrics, showing that our architectural choices and the use of MENTOR benefit training a fair and unbiased model at scale. Finally we show applications in video editing and personalization.

相關內容

We introduce the RetinaRegNet model, which can achieve state-of-the-art performance across various retinal image registration tasks. RetinaRegNet does not require training on any retinal images. It begins by establishing point correspondences between two retinal images using image features derived from diffusion models. This process involves the selection of feature points from the moving image using the SIFT algorithm alongside random point sampling. For each selected feature point, a 2D correlation map is computed by assessing the similarity between the feature vector at that point and the feature vectors of all pixels in the fixed image. The pixel with the highest similarity score in the correlation map corresponds to the feature point in the moving image. To remove outliers in the estimated point correspondences, we first applied an inverse consistency constraint, followed by a transformation-based outlier detector. This method proved to outperform the widely used random sample consensus (RANSAC) outlier detector by a significant margin. To handle large deformations, we utilized a two-stage image registration framework. A homography transformation was used in the first stage and a more accurate third-order polynomial transformation was used in the second stage. The model's effectiveness was demonstrated across three retinal image datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. RetinaRegNet outperformed current state-of-the-art methods in all three datasets. It was especially effective for registering image pairs with large displacement and scaling deformations. This innovation holds promise for various applications in retinal image analysis. Our code is publicly available at //github.com/mirthAI/RetinaRegNet.

As one of the fundamental video tasks in computer vision, Open-Vocabulary Action Recognition (OVAR) recently gains increasing attention, with the development of vision-language pre-trainings. To enable generalization of arbitrary classes, existing methods treat class labels as text descriptions, then formulate OVAR as evaluating embedding similarity between visual samples and textual classes. However, one crucial issue is completely ignored: the class descriptions given by users may be noisy, e.g., misspellings and typos, limiting the real-world practicality of vanilla OVAR. To fill the research gap, this paper pioneers to evaluate existing methods by simulating multi-level noises of various types, and reveals their poor robustness. To tackle the noisy OVAR task, we further propose one novel DENOISER framework, covering two parts: generation and discrimination. Concretely, the generative part denoises noisy class-text names via one decoding process, i.e., propose text candidates, then utilize inter-modal and intra-modal information to vote for the best. At the discriminative part, we use vanilla OVAR models to assign visual samples to class-text names, thus obtaining more semantics. For optimization, we alternately iterate between generative and discriminative parts for progressive refinements. The denoised text classes help OVAR models classify visual samples more accurately; in return, classified visual samples help better denoising. On three datasets, we carry out extensive experiments to show our superior robustness, and thorough ablations to dissect the effectiveness of each component.

We present a parameter-efficient method for continual video question-answering (VidQA) learning. Our method, named DAM, uses the proposed Dynamic Adapter Merging to (i) mitigate catastrophic forgetting, (ii) enable efficient adaptation to continually arriving datasets, (iii) handle inputs from unknown datasets during inference, and (iv) enable knowledge sharing across similar dataset domains. Given a set of continually streaming VidQA datasets, we sequentially train dataset-specific adapters for each dataset while freezing the parameters of a large pretrained video-language backbone. During inference, given a video-question sample from an unknown domain, our method first uses the proposed non-parametric router function to compute a probability for each adapter, reflecting how relevant that adapter is to the current video-question input instance. Subsequently, the proposed dynamic adapter merging scheme aggregates all the adapter weights into a new adapter instance tailored for that particular test sample to compute the final VidQA prediction, mitigating the impact of inaccurate router predictions and facilitating knowledge sharing across domains. Our DAM model outperforms prior state-of-the-art continual learning approaches by 9.1% while exhibiting 1.9% less forgetting on 6 VidQA datasets spanning various domains. We further extend DAM to continual image classification and image QA and outperform prior methods by a large margin. The code is publicly available at: //github.com/klauscc/DAM

Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques predominantly hinge on DDIM inversion as a prevalent practice rooted in Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, other mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, circumvents the above problem. They are commonly composed of multiple stages, typically starting with a text-to-image stage and followed by several super-resolution stages. In this pipeline, the DDIM inversion fails to find the initial noise and generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this category of T2I models and verify IterInv with the open-source DeepFloyd-IF model.Specifically, IterInv employ NTI as the inversion and reconstruction of low-resolution image generation. In stages 2 and 3, we update the latent variance at each timestep to find the deterministic inversion trace and promote the reconstruction process. By combining our method with a popular image editing method, we prove the application prospects of IterInv. The code will be released upon acceptance. The code is available at \url{//github.com/Tchuanm/IterInv.git}.

Modeling large scenes from unconstrained images has proven to be a major challenge in computer vision. Existing methods tackling in-the-wild scene modeling operate in closed-world settings, where no conditioning on priors acquired from real-world images is present. We propose RefinedFields, which is, to the best of our knowledge, the first method leveraging pre-trained models to improve in-the-wild scene modeling. We employ pre-trained networks to refine K-Planes representations via optimization guidance using an alternating training procedure. We carry out extensive experiments and verify the merit of our method on synthetic data and real tourism photo collections. RefinedFields enhances rendered scenes with richer details and improves upon its base representation on the task of novel view synthesis in the wild. Our project page can be found at //refinedfields.github.io.

Large Vision Language Models (VLMs), such as CLIP, have significantly contributed to various computer vision tasks, including object recognition and object detection. Their open vocabulary feature enhances their value. However, their black-box nature and lack of explainability in predictions make them less trustworthy in critical domains. Recently, some work has been done to force VLMs to provide reasonable rationales for object recognition, but this often comes at the expense of classification accuracy. In this paper, we first propose a mathematical definition of explainability in the object recognition task based on the joint probability distribution of categories and rationales, then leverage this definition to fine-tune CLIP in an explainable manner. Through evaluations of different datasets, our method demonstrates state-of-the-art performance in explainable classification. Notably, it excels in zero-shot settings, showcasing its adaptability. This advancement improves explainable object recognition, enhancing trust across diverse applications. The code will be made available online upon publication.

Text-to-video models have demonstrated substantial potential in robotic decision-making, enabling the imagination of realistic plans of future actions as well as accurate environment simulation. However, one major issue in such models is generalization -- models are limited to synthesizing videos subject to language instructions similar to those seen at training time. This is heavily limiting in decision-making, where we seek a powerful world model to synthesize plans of unseen combinations of objects and actions in order to solve previously unseen tasks in new environments. To resolve this issue, we introduce RoboDreamer, an innovative approach for learning a compositional world model by factorizing the video generation. We leverage the natural compositionality of language to parse instructions into a set of lower-level primitives, which we condition a set of models on to generate videos. We illustrate how this factorization naturally enables compositional generalization, by allowing us to formulate a new natural language instruction as a combination of previously seen components. We further show how such a factorization enables us to add additional multimodal goals, allowing us to specify a video we wish to generate given both natural language instructions and a goal image. Our approach can successfully synthesize video plans on unseen goals in the RT-X, enables successful robot execution in simulation, and substantially outperforms monolithic baseline approaches to video generation.

Text-video retrieval aims to find the most relevant cross-modal samples for a given query. Recent methods focus on modeling the whole spatial-temporal relations. However, since video clips contain more diverse content than captions, the model aligning these asymmetric video-text pairs has a high risk of retrieving many false positive results. In this paper, we propose Probabilistic Token Aggregation (\textit{ProTA}) to handle cross-modal interaction with content asymmetry. Specifically, we propose dual partial-related aggregation to disentangle and re-aggregate token representations in both low-dimension and high-dimension spaces. We propose token-based probabilistic alignment to generate token-level probabilistic representation and maintain the feature representation diversity. In addition, an adaptive contrastive loss is proposed to learn compact cross-modal distribution space. Based on extensive experiments, \textit{ProTA} achieves significant improvements on MSR-VTT (50.9%), LSMDC (25.8%), and DiDeMo (47.2%).

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

北京阿比特科技有限公司