亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weighted round robin (WRR) is an effective, yet particularly easy-to-implement packet scheduler. A slight modification in the implementation of WRR, interleaved weighted round robin, has been proposed as an enhancement of the initial version and has been recently investigated. Network calculus is a versatile framework to model and analyze such network schedulers. By means of this, one can derive theoretical upper bounds on network performance metrics, such as delay or backlog. In our previous work, we derive performance bounds by showing that both round-robin variants belong to a class called bandwidth-sharing policy; however, the proofs are incomplete and thus, we cannot conclude that the round-robin schedulers are bandwidth-sharing policies (under variable packet sizes).To that end, in the subsequent erratum, we introduce so-called resource-segregating policies and show the round-robin schedulers to be members of this class. We first present our original work, as published in [CNS22-1], and then the erratum correcting the previously mentioned shortcoming. In our erratum, we provide slightly worse delay bounds compared to [CNS22-1]; yet, across all our experiments, they significantly outperform the state of the art.

相關內容

Finding the best way to schedule operations in a computation graph is a classical NP-hard problem which is central to compiler optimization. However, evaluating the goodness of a schedule on the target hardware can be very time-consuming. Traditional approaches as well as previous machine learning ones typically optimize proxy metrics, which are fast to evaluate but can lead to bad schedules when tested on the target hardware. In this work, we propose a new approach to scheduling by sampling proportionally to the proxy metric using a novel GFlowNet method. We introduce a technique to control the trade-off between diversity and goodness of the proposed schedules at inference time and demonstrate empirically that the pure optimization baselines can lead to subpar performance with respect to our approach when tested on a target model. Furthermore, we show that conditioning the GFlowNet on the computation graph enables generalization to unseen scheduling problems for both synthetic and real-world compiler datasets.

In group sequential analysis, data is collected and analyzed in batches until pre-defined stopping criteria are met. Inference in the parametric setup typically relies on the limiting asymptotic multivariate normality of the repeatedly computed maximum likelihood estimators (MLEs), a result first rigorously proved by Jennison and Turbull (1997) under general regularity conditions. In this work, using Stein's method we provide optimal order, non-asymptotic bounds on the distance for smooth test functions between the joint group sequential MLEs and the appropriate normal distribution under the same conditions. Our results assume independent observations but allow heterogeneous (i.e., non-identically distributed) data. We examine how the resulting bounds simplify when the data comes from an exponential family. Finally, we present a general result relating multivariate Kolmogorov distance to smooth function distance which, in addition to extending our results to the former metric, may be of independent interest.

We analyse a class of time discretizations for solving the nonlinear Schr\"odinger equation with non-smooth potential and at low-regularity on an arbitrary Lipschitz domain $\Omega \subset \mathbb{R}^d$, $d \le 3$. We show that these schemes, together with their optimal local error structure, allow for convergence under lower regularity assumptions on both the solution and the potential than is required by classical methods, such as splitting or exponential integrator methods. Moreover, we show first and second order convergence in the case of periodic boundary conditions, in any fractional positive Sobolev space $H^{r}$, $r \ge 0$, beyond the more typical $L^2$ or $H^\sigma (\sigma>\frac{d}{2}$) -error analysis. Numerical experiments illustrate our results.

This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph with correlated Gaussian errors due to confounding. First, we derive model identifiability under the sublinear growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state-of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python implementation is available at //github.com/chunlinli/defuse.

A candidate explanation of the good empirical performance of deep neural networks is the implicit regularization effect of first order optimization methods. Inspired by this, we prove a convergence theorem for nonconvex composite optimization, and apply it to a general learning problem covering many machine learning applications, including supervised learning. We then present a deep multilayer perceptron model and prove that, when sufficiently wide, it $(i)$ leads to the convergence of gradient descent to a global optimum with a linear rate, $(ii)$ benefits from the implicit regularization effect of gradient descent, $(iii)$ is subject to novel bounds on the generalization error, $(iv)$ exhibits the lazy training phenomenon and $(v)$ enjoys learning rate transfer across different widths. The corresponding coefficients, such as the convergence rate, improve as width is further increased, and depend on the even order moments of the data generating distribution up to an order depending on the number of layers. The only non-mild assumption we make is the concentration of the smallest eigenvalue of the neural tangent kernel at initialization away from zero, which has been shown to hold for a number of less general models in contemporary works. We present empirical evidence supporting this assumption as well as our theoretical claims.

We describe a model for polarization in multi-agent systems based on Esteban and Ray's standard family of polarization measures from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also prove that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. Furthermore, we show how our model relates to the classic DeGroot model for social learning. We illustrate our model with several simulations of a running example about polarization over vaccines and of other case studies. The theoretical results and simulations will provide insight into the phenomenon of polarization.

In this paper, our objective is primarily to use adaptive inverse-quadratic (IQ) and inverse-multi-quadratic (IMQ) radial basis function (RBF) interpolation techniques to develop an enhanced Adam-Bashforth and Adam-Moulton methods. By utilizing a free parameter involved in the radial basis function, the local convergence of the numerical solution is enhanced by making the local truncation error vanish. Consistency and stability analysis is presented along with some numerical results to back up our assertions. The accuracy and rate of convergence of each proposed technique are equal to or better than the original Adam-Bashforth and Adam-Moulton methods by eliminating the local truncation error thus, the proposed adaptive methods are optimal. We conclude that both IQ and IMQ-RBF methods yield an improved order of convergence than classical methods, while the superiority of one method depends on the method and the problem considered.

The problem of tensor completion is important to many areas such as computer vision, data analysis, signal processing, etc. Previously, a category of methods known as low-rank tensor completion has been proposed and developed, involving the enforcement of low-rank structures on completed tensors. While such methods have been constantly improved, none have previously considered exploiting the numerical properties of tensor elements. This work attempts to construct a new methodological framework called GCDTC (Generalized CP Decomposition Tensor Completion) based on these properties. In this newly introduced framework, the CP Decomposition is reformulated as a Maximum Likelihood Estimate (MLE) problem, and generalized via the introduction of differing loss functions. The generalized decomposition is subsequently applied to low-rank tensor completion. Such loss functions can also be easily adjusted to consider additional factors in completion, such as smoothness, standardization, etc. An example of nonnegative integer tensor decomposition via the Poisson CP Decomposition is given to demonstrate the new methodology's potentials. Through experimentation with real-life data, it is confirmed that this method could produce results superior to current state-of-the-art methodologies. It is expected that the proposed notion would inspire a new set of tensor completion methods based on the generalization of decompositions, thus contributing to related fields.

While the maximum entropy (MaxEnt) reinforcement learning (RL) framework -- often touted for its exploration and robustness capabilities -- is usually motivated from a probabilistic perspective, the use of deep probabilistic models has not gained much traction in practice due to their inherent complexity. In this work, we propose the adoption of latent variable policies within the MaxEnt framework, which we show can provably approximate any policy distribution, and additionally, naturally emerges under the use of world models with a latent belief state. We discuss why latent variable policies are difficult to train, how naive approaches can fail, then subsequently introduce a series of improvements centered around low-cost marginalization of the latent state, allowing us to make full use of the latent state at minimal additional cost. We instantiate our method under the actor-critic framework, marginalizing both the actor and critic. The resulting algorithm, referred to as Stochastic Marginal Actor-Critic (SMAC), is simple yet effective. We experimentally validate our method on continuous control tasks, showing that effective marginalization can lead to better exploration and more robust training. Our implementation is open sourced at //github.com/zdhNarsil/Stochastic-Marginal-Actor-Critic.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司