亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal learning, which integrates data from diverse sensory modes, plays a pivotal role in artificial intelligence. However, existing multimodal learning methods often struggle with challenges where some modalities appear more dominant than others during multimodal learning, resulting in suboptimal performance. To address this challenge, we propose MLA (Multimodal Learning with Alternating Unimodal Adaptation). MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process, thereby minimizing interference between modalities. Simultaneously, it captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities. This optimization process is controlled by a gradient modification mechanism to prevent the shared head from losing previously acquired information. During the inference phase, MLA utilizes a test-time uncertainty-based model fusion mechanism to integrate multimodal information. Extensive experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities. These experiments demonstrate the superiority of MLA over competing prior approaches.

相關內容

Over the past decade, deep learning has proven to be a highly effective tool for learning meaningful features from raw data. However, it remains an open question how deep networks perform hierarchical feature learning across layers. In this work, we attempt to unveil this mystery by investigating the structures of intermediate features. Motivated by our empirical findings that linear layers mimic the roles of deep layers in nonlinear networks for feature learning, we explore how deep linear networks transform input data into output by investigating the output (i.e., features) of each layer after training in the context of multi-class classification problems. Toward this goal, we first define metrics to measure within-class compression and between-class discrimination of intermediate features, respectively. Through theoretical analysis of these two metrics, we show that the evolution of features follows a simple and quantitative pattern from shallow to deep layers when the input data is nearly orthogonal and the network weights are minimum-norm, balanced, and approximate low-rank: Each layer of the linear network progressively compresses within-class features at a geometric rate and discriminates between-class features at a linear rate with respect to the number of layers that data have passed through. To the best of our knowledge, this is the first quantitative characterization of feature evolution in hierarchical representations of deep linear networks. Empirically, our extensive experiments not only validate our theoretical results numerically but also reveal a similar pattern in deep nonlinear networks which aligns well with recent empirical studies. Moreover, we demonstrate the practical implications of our results in transfer learning. Our code is available at \url{//github.com/Heimine/PNC_DLN}.

Video Coding for Machines (VCM) aims to compress visual signals for machine analysis. However, existing methods only consider a few machines, neglecting the majority. Moreover, the machine's perceptual characteristics are not leveraged effectively, resulting in suboptimal compression efficiency. To overcome these limitations, this paper introduces Satisfied Machine Ratio (SMR), a metric that statistically evaluates the perceptual quality of compressed images and videos for machines by aggregating satisfaction scores from them. Each score is derived from machine perceptual differences between original and compressed images. Targeting image classification and object detection tasks, we build two representative machine libraries for SMR annotation and create a large-scale SMR dataset to facilitate SMR studies. We then propose an SMR prediction model based on the correlation between deep feature differences and SMR. Furthermore, we introduce an auxiliary task to increase the prediction accuracy by predicting the SMR difference between two images in different quality. Extensive experiments demonstrate that SMR models significantly improve compression performance for machines and exhibit robust generalizability on unseen machines, codecs, datasets, and frame types. SMR enables perceptual coding for machines and propels VCM from specificity to generality. Code is available at //github.com/ywwynm/SMR.

Building machines capable of efficiently collaborating with humans has been a longstanding goal in artificial intelligence. Especially in the presence of uncertainties, optimal cooperation often requires that humans and artificial agents model each other's behavior and use these models to infer underlying goals, beliefs or intentions, potentially involving multiple levels of recursion. Empirical evidence for such higher-order cognition in human behavior is also provided by previous works in cognitive science, linguistics, and robotics. We advocate for a new paradigm for active learning for human feedback that utilises humans as active data sources while accounting for their higher levels of agency. In particular, we discuss how increasing level of agency results in qualitatively different forms of rational communication between an active learning system and a teacher. Additionally, we provide a practical example of active learning using a higher-order cognitive model. This is accompanied by a computational study that underscores the unique behaviors that this model produces.

Transformers have achieved promising results on a variety of tasks. However, the quadratic complexity in self-attention computation has limited the applications, especially in low-resource settings and mobile or edge devices. Existing works have proposed to exploit hand-crafted attention patterns to reduce computation complexity. However, such hand-crafted patterns are data-agnostic and may not be optimal. Hence, it is likely that relevant keys or values are being reduced, while less important ones are still preserved. Based on this key insight, we propose a novel deformable audio Transformer for audio recognition, named DATAR, where a deformable attention equipping with a pyramid transformer backbone is constructed and learnable. Such an architecture has been proven effective in prediction tasks,~\textit{e.g.}, event classification. Moreover, we identify that the deformable attention map computation may over-simplify the input feature, which can be further enhanced. Hence, we introduce a learnable input adaptor to alleviate this issue, and DATAR achieves state-of-the-art performance.

Federated learning (FL) has become a popular tool for solving traditional Reinforcement Learning (RL) tasks. The multi-agent structure addresses the major concern of data-hungry in traditional RL, while the federated mechanism protects the data privacy of individual agents. However, the federated mechanism also exposes the system to poisoning by malicious agents that can mislead the trained policy. Despite the advantage brought by FL, the vulnerability of Federated Reinforcement Learning (FRL) has not been well-studied before. In this work, we propose a general framework to characterize FRL poisoning as an optimization problem and design a poisoning protocol that can be applied to policy-based FRL. Our framework can also be extended to FRL with actor-critic as a local RL algorithm by training a pair of private and public critics. We provably show that our method can strictly hurt the global objective. We verify our poisoning effectiveness by conducting extensive experiments targeting mainstream RL algorithms and over various RL OpenAI Gym environments covering a wide range of difficulty levels. Within these experiments, we compare clean and baseline poisoning methods against our proposed framework. The results show that the proposed framework is successful in poisoning FRL systems and reducing performance across various environments and does so more effectively than baseline methods. Our work provides new insights into the vulnerability of FL in RL training and poses new challenges for designing robust FRL algorithms

Multimodal learning helps to comprehensively understand the world, by integrating different senses. Accordingly, multiple input modalities are expected to boost model performance, but we actually find that they are not fully exploited even when the multimodal model outperforms its uni-modal counterpart. Specifically, in this paper we point out that existing multimodal discriminative models, in which uniform objective is designed for all modalities, could remain under-optimized uni-modal representations, caused by another dominated modality in some scenarios, e.g., sound in blowing wind event, vision in drawing picture event, etc. To alleviate this optimization imbalance, we propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective. Further, an extra Gaussian noise that changes dynamically is introduced to avoid possible generalization drop caused by gradient modulation. As a result, we achieve considerable improvement over common fusion methods on different multimodal tasks, and this simple strategy can also boost existing multimodal methods, which illustrates its efficacy and versatility. The source code is available at \url{//github.com/GeWu-Lab/OGM-GE_CVPR2022}.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

北京阿比特科技有限公司