This paper describes the work of the UniBuc Archaeology team for CLPsych's 2024 Shared Task, which involved finding evidence within the text supporting the assigned suicide risk level. Two types of evidence were required: highlights (extracting relevant spans within the text) and summaries (aggregating evidence into a synthesis). Our work focuses on evaluating Large Language Models (LLM) as opposed to an alternative method that is much more memory and resource efficient. The first approach employs a good old-fashioned machine learning (GOML) pipeline consisting of a tf-idf vectorizer with a logistic regression classifier, whose representative features are used to extract relevant highlights. The second, more resource intensive, uses an LLM for generating the summaries and is guided by chain-of-thought to provide sequences of text indicating clinical markers.
With the emergence of Artificial Intelligence (AI)-based decision-making, explanations help increase new technology adoption through enhanced trust and reliability. However, our experimental study challenges the notion that every user universally values explanations. We argue that the agreement with AI suggestions, whether accompanied by explanations or not, is influenced by individual differences in personality traits and the users' comfort with technology. We found that people with higher neuroticism and lower technological comfort showed more agreement with the recommendations without explanations. As more users become exposed to eXplainable AI (XAI) and AI-based systems, we argue that the XAI design should not provide explanations for users with high neuroticism and low technology comfort. Prioritizing user personalities in XAI systems will help users become better collaborators of AI systems.
An October 2023 crash between a GM Cruise robotaxi and a pedestrian in San Francisco resulted not only in a severe injury, but also dramatic upheaval at that company that will likely have lasting effects throughout the industry. Is-sues stem not just from the loss events themselves, but also from how Cruise mishandled dealing with their robotaxi dragging a pedestrian under the vehicle after the initial post-crash stop. External investigation reports provide raw material describing the incident and critique the company's response from a regulatory point of view, but exclude safety engineering recommendations from scope. We highlight specific facts and relationships among events by tying together different pieces of the external report material. We then explore safety lessons that might be learned related to: recognizing and responding to nearby mishaps, building an accurate world model of a post-collision scenario, the in-adequacy of a so-called "minimal risk condition" strategy in complex situations, poor organizational discipline in responding to a mishap, overly aggressive post-collision automation choices that made a bad situation worse, and a reluctance to admit to a mishap causing much worse organizational harm down-stream.
This report introduces a solution to the Topic 1 Zero-shot Image Captioning of 2024 NICE : New frontiers for zero-shot Image Captioning Evaluation. In contrast to NICE 2023 datasets, this challenge involves new annotations by humans with significant differences in caption style and content. Therefore, we enhance image captions effectively through retrieval augmentation and caption grading methods. At the data level, we utilize high-quality captions generated by image caption models as training data to address the gap in text styles. At the model level, we employ OFA (a large-scale visual-language pre-training model based on handcrafted templates) to perform the image captioning task. Subsequently, we propose caption-level strategy for the high-quality caption data generated by the image caption models and integrate them with retrieval augmentation strategy into the template to compel the model to generate higher quality, more matching, and semantically enriched captions based on the retrieval augmentation prompts. Our approach achieves a CIDEr score of 234.11.
Human-robot interaction requires to be studied in the wild. In the summers of 2022 and 2023, we deployed two trash barrel service robots through the wizard-of-oz protocol in public spaces to study human-robot interactions in urban settings. We deployed the robots at two different public plazas in downtown Manhattan and Brooklyn for a collective of 20 hours of field time. To date, relatively few long-term human-robot interaction studies have been conducted in shared public spaces. To support researchers aiming to fill this gap, we would like to share some of our insights and learned lessons that would benefit both researchers and practitioners on how to deploy robots in public spaces. We share best practices and lessons learned with the HRI research community to encourage more in-the-wild research of robots in public spaces and call for the community to share their lessons learned to a GitHub repository.
Since the emergence of GPT-3, Large Language Models (LLMs) have caught the eyes of researchers, practitioners, and educators in the field of software engineering. However, there has been relatively little investigation regarding the performance of LLMs in assisting with requirements analysis and UML modeling. This paper explores how LLMs can assist novice analysts in creating three types of typical UML models: use case models, class diagrams, and sequence diagrams. For this purpose, we designed the modeling tasks of these three UML models for 45 undergraduate students who participated in a requirements modeling course, with the help of LLMs. By analyzing their project reports, we found that LLMs can assist undergraduate students as notice analysts in UML modeling tasks, but LLMs also have shortcomings and limitations.
Since Automated Driving Systems are not expected to operate flawlessly, Automated Vehicles will require human assistance in certain situations. For this reason, teleoperation offers the opportunity for a human to be remotely connected to the vehicle and assist it. The Remote Operator can provide extensive support by directly controlling the vehicle, eliminating the need for Automated Driving functions. However, due to the physical disconnection to the vehicle, monitoring and controlling is challenging compared to driving in the vehicle. Therefore, this work follows the approach of simplifying the task for the Remote Operator by separating the path and velocity input. In a study using a miniature vehicle, different operator-vehicle interactions and input devices were compared based on collisions, task completion time, usability and workload. The evaluation revealed significant differences between the three implemented prototypes using a steering wheel, mouse and keyboard or a touchscreen. The separate input of path and velocity via mouse and keyboard or touchscreen is preferred but is slower compared to parallel input via steering wheel.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.