We study the classic \textsc{(Uncapacitated) Facility Location} problem on Unit Disk Graphs (UDGs). For a given point set $P$ in the plane, the unit disk graph UDG(P) on $P$ has vertex set $P$ and an edge between two distinct points $p, q \in P$ if and only if their Euclidean distance $|pq|$ is at most 1. The weight of the edge $pq$ is equal to their distance $|pq|$. An instance of \fl on UDG(P) consists of a set $C\subseteq P$ of clients and a set $F\subseteq P$ of facilities, each having an opening cost $f_i$. The goal is to pick a subset $F'\subseteq F$ to open while minimizing $\sum_{i\in F'} f_i + \sum_{v\in C} d(v,F')$, where $d(v,F')$ is the distance of $v$ to nearest facility in $F'$ through UDG(P). In this paper, we present the first Quasi-Polynomial Time Approximation Schemes (QPTAS) for the problem. While approximation schemes are well-established for facility location problems on sparse geometric graphs (such as planar graphs), there is a lack of such results for dense graphs. Specifically, prior to this study, to the best of our knowledge, there was no approximation scheme for any facility location problem on UDGs in the general setting.
Robust Gray codes were introduced by (Lolck and Pagh, SODA 2024). Informally, a robust Gray code is a (binary) Gray code $\mathcal{G}$ so that, given a noisy version of the encoding $\mathcal{G}(j)$ of an integer $j$, one can recover $\hat{j}$ that is close to $j$ (with high probability over the noise). Such codes have found applications in differential privacy. In this work, we present near-optimal constructions of robust Gray codes. In more detail, we construct a Gray code $\mathcal{G}$ of rate $1 - H_2(p) - \varepsilon$ that is efficiently encodable, and that is robust in the following sense. Supposed that $\mathcal{G}(j)$ is passed through the binary symmetric channel $\text{BSC}_p$ with cross-over probability $p$, to obtain $x$. We present an efficient decoding algorithm that, given $x$, returns an estimate $\hat{j}$ so that $|j - \hat{j}|$ is small with high probability.
We introduce syntactic modal operator $\BOX$ for \textit{being a thesis} into first-order logic. This logic is a modern realization of R. Carnap's old ideas on modality, as logical necessity (J. Symb. Logic, 1946) \cite{Ca46}. We place it within the modern framework of quantified modal logic with a variant of possible world semantics with variable domains. We prove completeness using a kind of normal form and show that in the canonical frame, the relation on all maximal consistent sets, $R = \{\langle \Gamma, \Delta \rangle : \forall A (\BOX A \in \Gamma \Longrightarrow A \in \Delta)\}$, is a universal relation. The strength of the $\BOX$ operator is a proper extension of modal logic $\mathsf{S5}$. Using completeness, we prove that satisfiability in a model of $\BOX A$ under arbitrary valuation implies that $A$ is a thesis of formulated logic. So we can syntactically define logical entailment and consistency. Our semantics differ from S. Kripke's standard one \cite{Kr63} in syntax, semantics, and interpretation of the necessity operator. We also have free variables, contrary to Kripke's and Carnap's approaches, but our notion of substitution is non-standard (variables inside modalities are not free). All $\BOX$-free first-order theses are provable, as well as the Barcan formula and its converse. Our specific theses are \linebreak[4] $\BOX A \to \forall x A$, $\neg \BOX (x = y)$, $\neg \BOX \neg (x = y)$, $\neg \BOX P(x)$, $\neg \BOX \neg P(x)$. We also have $\POS \exists x A(x) \to \POS A(^{y}/_{x})$, and $\forall x \BOX A(x) \to \BOX A(^{y}/_{x})$, if $A$ is a $\BOX$-free formula.
In $2014$, Gupta and Ray proved that the circulant involutory matrices over the finite field $\mathbb{F}_{2^m}$ can not be maximum distance separable (MDS). This non-existence also extends to circulant orthogonal matrices of order $2^d \times 2^d$ over finite fields of characteristic $2$. These findings inspired many authors to generalize the circulant property for constructing lightweight MDS matrices with practical applications in mind. Recently, in $2022,$ Chatterjee and Laha initiated a study of circulant matrices by considering semi-involutory and semi-orthogonal properties. Expanding on their work, this article delves into circulant matrices possessing these characteristics over the finite field $\mathbb{F}_{2^m}.$ Notably, we establish a correlation between the trace of associated diagonal matrices and the MDS property of the matrix. We prove that this correlation holds true for even order semi-orthogonal matrices and semi-involutory matrices of all orders. Additionally, we provide examples that for circulant, semi-orthogonal matrices of odd orders over a finite field with characteristic $2$, the trace of associated diagonal matrices may possess non-zero values.
A randomized algorithm for computing a data sparse representation of a given rank structured matrix $A$ (a.k.a. an $H$-matrix) is presented. The algorithm draws on the randomized singular value decomposition (RSVD), and operates under the assumption that algorithms for rapidly applying $A$ and $A^{*}$ to vectors are available. The algorithm analyzes the hierarchical tree that defines the rank structure using graph coloring algorithms to generate a set of random test vectors. The matrix is then applied to the test vectors, and in a final step the matrix itself is reconstructed by the observed input-output pairs. The method presented is an evolution of the "peeling algorithm" of L. Lin, J. Lu, and L. Ying, "Fast construction of hierarchical matrix representation from matrix-vector multiplication," JCP, 230(10), 2011. For the case of uniform trees, the new method substantially reduces the pre-factor of the original peeling algorithm. More significantly, the new technique leads to dramatic acceleration for many non-uniform trees since it constructs sample vectors that are optimized for a given tree. The algorithm is particularly effective for kernel matrices involving a set of points restricted to a lower dimensional object than the ambient space, such as a boundary integral equation defined on a surface in three dimensions.
In $1998,$ Daemen {\it{ et al.}} introduced a circulant Maximum Distance Separable (MDS) matrix in the diffusion layer of the Rijndael block cipher, drawing significant attention to circulant MDS matrices. This block cipher is now universally acclaimed as the AES block cipher. In $2016,$ Liu and Sim introduced cyclic matrices by modifying the permutation of circulant matrices and established the existence of MDS property for orthogonal left-circulant matrices, a notable subclass within cyclic matrices. While circulant matrices have been well-studied in the literature, the properties of cyclic matrices are not. Back in $1961$, Friedman introduced $g$-circulant matrices which form a subclass of cyclic matrices. In this article, we first establish a permutation equivalence between a cyclic matrix and a circulant matrix. We explore properties of cyclic matrices similar to $g$-circulant matrices. Additionally, we determine the determinant of $g$-circulant matrices of order $2^d \times 2^d$ and prove that they cannot be simultaneously orthogonal and MDS over a finite field of characteristic $2$. Furthermore, we prove that this result holds for any cyclic matrix.
CAD (Computer-Aided Design) plays a crucial role in mechanical industry, where large numbers of similar-shaped CAD parts are often created. Efficiently reusing these parts is key to reducing design and production costs for enterprises. Retrieval systems are vital for achieving CAD reuse, but the complex shapes of CAD models are difficult to accurately describe using text or keywords, making traditional retrieval methods ineffective. While existing representation learning approaches have been developed for CAD, manually labeling similar samples in these methods is expensive. Additionally, CAD models' unique parameterized data structure presents challenges for applying existing 3D shape representation learning techniques directly. In this work, we propose GC-CAD, a self-supervised contrastive graph neural network-based method for mechanical CAD retrieval that directly models parameterized CAD raw files. GC-CAD consists of two key modules: structure-aware representation learning and contrastive graph learning framework. The method leverages graph neural networks to extract both geometric and topological information from CAD models, generating feature representations. We then introduce a simple yet effective contrastive graph learning framework approach, enabling the model to train without manual labels and generate retrieval-ready representations. Experimental results on four datasets including human evaluation demonstrate that the proposed method achieves significant accuracy improvements and up to 100 times efficiency improvement over the baseline methods.
We present a novel quantum high-dimensional linear regression algorithm with an $\ell_1$-penalty based on the classical LARS (Least Angle Regression) pathwise algorithm. Similarly to available classical algorithms for Lasso, our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions. A quadratic speedup on the number of features $d$ is possible by using the quantum minimum-finding routine from D\"urr and Hoyer (arXiv'96) in order to obtain the joining time at each iteration. We then improve upon this simple quantum algorithm and obtain a quadratic speedup both in the number of features $d$ and the number of observations $n$ by using the approximate quantum minimum-finding routine from Chen and de Wolf (ICALP'23). As one of our main contributions, we construct a quantum unitary to approximately compute the joining times to be searched over by the approximate quantum minimum finding. Since the joining times are no longer exactly computed, it is no longer clear that the resulting approximate quantum algorithm obtains a good solution. As our second main contribution, we prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm (and thus our quantum algorithm) is robust to errors. This means that it still outputs a path that minimises the Lasso cost function up to a small error if the joining times are approximately computed. Moreover, we show that, when the observations are sampled from a Gaussian distribution, our quantum algorithm's complexity only depends polylogarithmically on $n$, exponentially better than the classical LARS algorithm, while keeping the quadratic improvement on $d$. Finally, we propose a dequantised algorithm that also retains the polylogarithmic dependence on $n$, albeit with the linear scaling on $d$ from the standard LARS algorithm.
In this paper, we consider the counting function $E_P(y) = |P_{y} \cap Z^{n_x}|$ for a parametric polyhedron $P_{y} = \{x \in R^{n_x} \colon A x \leq b + B y\}$, where $y \in R^{n_y}$. We give a new representation of $E_P(y)$, called a \emph{piece-wise step-polynomial with periodic coefficients}, which is a generalization of piece-wise step-polynomials and integer/rational Ehrhart's quasi-polynomials. It gives the fastest way to calculate $E_P(y)$ in certain scenarios. The most important cases are the following: 1) We show that, for the parametric polyhedron $P_y$ defined by a standard-form system $A x = y,\, x \geq 0$ with a fixed number of equalities, the function $E_P(y)$ can be represented by a polynomial-time computable function. In turn, such a representation of $E_P(y)$ can be constructed by an $poly\bigl(n, \|A\|_{\infty}\bigr)$-time algorithm; 2) Assuming again that the number of equalities is fixed, we show that integer/rational Ehrhart's quasi-polynomials of a polytope can be computed by FPT-algorithms, parameterized by sub-determinants of $A$ or its elements; 3) Our representation of $E_P$ is more efficient than other known approaches, if $A$ has bounded elements, especially if it is sparse in addition. Additionally, we provide a discussion about possible applications in the area of compiler optimization. In some "natural" assumptions on a program code, our approach has the fastest complexity bounds.
Given a finite family $\mathcal{F}$ of graphs, we say that a graph $G$ is "$\mathcal{F}$-free" if $G$ does not contain any graph in $\mathcal{F}$ as a subgraph. A vertex-colored graph $H$ is called "rainbow" if no two vertices of $H$ have the same color. Given an integer $s$ and a finite family of graphs $\mathcal{F}$, let $\ell(s,\mathcal{F})$ denote the smallest integer such that any properly vertex-colored $\mathcal{F}$-free graph $G$ having $\chi(G)\geq\ell(s,\mathcal{F})$ contains an induced rainbow path on $s$ vertices. Scott and Seymour showed that $\ell(s,K)$ exists for every complete graph $K$. A conjecture of N. R. Aravind states that $\ell(s,C_3)=s$. The upper bound on $\ell(s,C_3)$ that can be obtained using the methods of Scott and Seymour setting $K=C_3$ are, however, super-exponential. Gy\'arf\'as and S\'ark\"ozy showed that $\ell(s,\{C_3,C_4\})=\mathcal{O}\big((2s)^{2s}\big)$. For $r\geq 2$, we show that $\ell(s,K_{2,r})\leq (r-1)(s-1)(s-2)/2+s$ and therefore, $\ell(s,C_4)\leq\frac{s^2-s+2}{2}$. This significantly improves Gy\'arf\'as and S\'ark\"ozy's bound and also covers a bigger class of graphs. We adapt our proof to achieve much stronger upper bounds for graphs of higher girth: we prove that $\ell(s,\{C_3,C_4,\ldots,C_{g-1}\})\leq s^{1+\frac{4}{g-4}}$, where $g\geq 5$. Moreover, in each case, our results imply the existence of at least $s!/2$ distinct induced rainbow paths on $s$ vertices. Along the way, we obtain some results on related problems on oriented graphs. For $r\geq 2$, let $\mathcal{B}_r$ denote the orientations of $K_{2,r}$ in which one vertex has out-degree or in-degree $r$. We show that every $\mathcal{B}_r$-free oriented graph $G$ having $\chi(G)\geq (r-1)(s-1)(s-2)+2s+1$ and every bikernel-perfect oriented graph $G$ with girth $g\geq 5$ having $\chi(G)\geq 2s^{1+\frac{4}{g-4}}$ contains every $s$ vertex oriented tree as an induced subgraph.
A toric code, introduced by Hansen to extend the Reed-Solomon code as a $k$-dimensional subspace of $\mathbb{F}_q^n$, is determined by a toric variety or its associated integral convex polytope $P \subseteq [0,q-2]^n$, where $k=|P \cap \mathbb{Z}^n|$ (the number of integer lattice points of $P$). There are two relevant parameters that determine the quality of a code: the information rate, which measures how much information is contained in a single bit of each codeword; and the relative minimum distance, which measures how many errors can be corrected relative to how many bits each codeword has. Soprunov and Soprunova defined a good infinite family of codes to be a sequence of codes of unbounded polytope dimension such that neither the corresponding information rates nor relative minimum distances go to 0 in the limit. We examine different ways of constructing families of codes by considering polytope operations such as the join and direct sum. In doing so, we give conditions under which no good family can exist and strong evidence that there is no such good family of codes.