The rise of large language models (LLMs) has revolutionized user interactions with knowledge-based systems, enabling chatbots to synthesize vast amounts of information and assist with complex, exploratory tasks. However, LLM-based chatbots often struggle to provide personalized support, particularly when users start with vague queries or lack sufficient contextual information. This paper introduces the Collaborative Assistant for Personalized Exploration (CARE), a system designed to enhance personalization in exploratory tasks by combining a multi-agent LLM framework with a structured user interface. CARE's interface consists of a Chat Panel, Solution Panel, and Needs Panel, enabling iterative query refinement and dynamic solution generation. The multi-agent framework collaborates to identify both explicit and implicit user needs, delivering tailored, actionable solutions. In a within-subject user study with 22 participants, CARE was consistently preferred over a baseline LLM chatbot, with users praising its ability to reduce cognitive load, inspire creativity, and provide more tailored solutions. Our findings highlight CARE's potential to transform LLM-based systems from passive information retrievers to proactive partners in personalized problem-solving and exploration.
Chatbot-based customer support services have significantly advanced with the introduction of large language models (LLMs), enabling enhanced response quality and broader application across industries. However, while these advancements focus on reducing business costs and improving customer satisfaction, limited attention has been given to the experiences of customer service agents, who are critical to the service ecosystem. A major challenge faced by agents is the stress caused by unnecessary emotional exhaustion from harmful texts, which not only impairs their efficiency but also negatively affects customer satisfaction and business outcomes. In this work, we propose an LLM-powered system designed to enhance the working conditions of customer service agents by addressing emotionally intensive communications. Our proposed system leverages LLMs to transform the tone of customer messages, preserving actionable content while mitigating the emotional impact on human agents. Furthermore, the application is implemented as a Chrome extension, making it highly adaptable and easy to integrate into existing systems. Our method aims to enhance the overall service experience for businesses, customers, and agents.
Deep reinforcement learning (DRL) has revolutionised quadruped robot locomotion, but existing control frameworks struggle to generalise beyond their training-induced observational scope, resulting in limited adaptability. In contrast, animals achieve exceptional adaptability through gait transition strategies, diverse gait utilisation, and seamless adjustment to immediate environmental demands. Inspired by these capabilities, we present a novel DRL framework that incorporates key attributes of animal locomotion: gait transition strategies, pseudo gait procedural memory, and adaptive motion adjustments. This approach enables our framework to achieve unparalleled adaptability, demonstrated through blind zero-shot deployment on complex terrains and recovery from critically unstable states. Our findings offer valuable insights into the biomechanics of animal locomotion, paving the way for robust, adaptable robotic systems.
The development of unbiased large language models is widely recognized as crucial, yet existing benchmarks fall short in detecting biases due to limited scope, contamination, and lack of a fairness baseline. SAGED(bias) is the first holistic benchmarking pipeline to address these problems. The pipeline encompasses five core stages: scraping materials, assembling benchmarks, generating responses, extracting numeric features, and diagnosing with disparity metrics. SAGED includes metrics for max disparity, such as impact ratio, and bias concentration, such as Max Z-scores. Noticing that metric tool bias and contextual bias in prompts can distort evaluation, SAGED implements counterfactual branching and baseline calibration for mitigation. For demonstration, we use SAGED on G20 Countries with popular 8b-level models including Gemma2, Llama3.1, Mistral, and Qwen2. With sentiment analysis, we find that while Mistral and Qwen2 show lower max disparity and higher bias concentration than Gemma2 and Llama3.1, all models are notably biased against countries like Russia and (except for Qwen2) China. With further experiments to have models role-playing U.S. presidents, we see bias amplifies and shifts in heterogeneous directions. Moreover, we see Qwen2 and Mistral not engage in role-playing, while Llama3.1 and Gemma2 role-play Trump notably more intensively than Biden and Harris, indicating role-playing performance bias in these models.
Large language models (LLMs) have shown significant potential for robotics applications, particularly task planning, by harnessing their language comprehension and text generation capabilities. However, in applications such as household robotics, a critical gap remains in the personalization of these models to individual user preferences. We introduce LLM-Personalize, a novel framework with an optimization pipeline designed to personalize LLM planners for household robotics. Our LLM-Personalize framework features an LLM planner that performs iterative planning in multi-room, partially-observable household scenarios, making use of a scene graph constructed with local observations. The generated plan consists of a sequence of high-level actions which are subsequently executed by a controller. Central to our approach is the optimization pipeline, which combines imitation learning and iterative self-training to personalize the LLM planner. In particular, the imitation learning phase performs initial LLM alignment from demonstrations, and bootstraps the model to facilitate effective iterative self-training, which further explores and aligns the model to user preferences. We evaluate LLM-Personalize on Housekeep, a challenging simulated real-world 3D benchmark for household rearrangements, and show that LLM-Personalize achieves more than a 30 percent increase in success rate over existing LLM planners, showcasing significantly improved alignment with human preferences. Project page: //gdg94.github.io/projectllmpersonalize/.
As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to adversarial attacks is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel black-box approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem and uses open-ended search to generate prompts that are both effective and diverse. Focusing on the safety domain, we use Rainbow Teaming to target various state-of-the-art LLMs, including the Llama 2 and Llama 3 models. Our approach reveals hundreds of effective adversarial prompts, with an attack success rate exceeding 90% across all tested models. Furthermore, we demonstrate that prompts generated by Rainbow Teaming are highly transferable and that fine-tuning models with synthetic data generated by our method significantly enhances their safety without sacrificing general performance or helpfulness. We additionally explore the versatility of Rainbow Teaming by applying it to question answering and cybersecurity, showcasing its potential to drive robust open-ended self-improvement in a wide range of applications.
The widespread application of large language models (LLMs) underscores the importance of deep learning (DL) technologies that rely on foundational DL libraries such as PyTorch and TensorFlow. Despite their robust features, these libraries face challenges with scalability and adaptation to rapid advancements in the LLM community. In response, tech giants like Apple and Huawei are developing their own DL libraries to enhance performance, increase scalability, and safeguard intellectual property. Ensuring the security of these libraries is crucial, with fuzzing being a vital solution. However, existing fuzzing frameworks struggle with target flexibility, effectively testing bug-prone API sequences, and leveraging the limited available information in new libraries. To address these limitations, we propose FUTURE, the first universal fuzzing framework tailored for newly introduced and prospective DL libraries. FUTURE leverages historical bug information from existing libraries and fine-tunes LLMs for specialized code generation. This strategy helps identify bugs in new libraries and uses insights from these libraries to enhance security in existing ones, creating a cycle from history to future and back. To evaluate FUTURE's effectiveness, we conduct comprehensive evaluations on three newly introduced DL libraries. Evaluation results demonstrate that FUTURE significantly outperforms existing fuzzers in bug detection, success rate of bug reproduction, validity rate of code generation, and API coverage. Notably, FUTURE has detected 148 bugs across 452 targeted APIs, including 142 previously unknown bugs. Among these, 10 have been assigned CVE IDs. Additionally, FUTURE detects 7 bugs in PyTorch, demonstrating its ability to enhance security in existing libraries in reverse.
Recently, large language models (LLMs) have shown strong potential in code generation tasks. However, there are still gaps before they can be fully applied in actual software development processes. Accurately assessing the code generation capabilities of large language models has become an important basis for evaluating and improving the models. Some existing works have constructed datasets to evaluate the capabilities of these models. However, the current evaluation process may encounter the illusion of "Specialist in Familiarity", primarily due to three gaps: the exposure of target code, case timeliness, and dependency availability. The fundamental reason for these gaps is that the code in current datasets may have been extensively exposed and exercised during the training phase, and due to the continuous training and development of LLM, their timeliness has been severely compromised. The key to solve the problem is to, as much as possible, evaluate the LLMs using code that they have not encountered before. Thus, the fundamental idea in this paper is to draw on the concept of code obfuscation, changing code at different levels while ensuring the functionality and output. To this end, we build a code-obfuscation based benchmark OBFUSEVAL. We first collect 1,354 raw cases from five real-world projects, including function description and code. Then we use three-level strategy (symbol, structure and semantic) to obfuscate descriptions, code and context dependencies. We evaluate four LLMs on OBFU- SEVAL and compared the effectiveness of different obfuscation strategy. We use official test suites of these projects to evaluate the generated code. The results show that after obfuscation, the average decrease ratio of test pass rate can up to 62.5%.
We formalize the problem of prompt compression for large language models (LLMs) and present a framework to unify token-level prompt compression methods which create hard prompts for black-box models. We derive the distortion-rate function for this setup as a linear program, and provide an efficient algorithm to compute this fundamental limit via the dual of the linear program. Using the distortion-rate function as the baseline, we study the performance of existing compression schemes on a synthetic dataset consisting of prompts generated from a Markov chain, natural language queries, and their respective answers. Our empirical analysis demonstrates the criticality of query-aware prompt compression, where the compressor has knowledge of the downstream task/query for the black-box LLM. We show that there is a large gap between the performance of current prompt compression methods and the optimal strategy, and propose Adaptive QuerySelect, a query-aware, variable-rate adaptation of a prior work to close the gap. We extend our experiments to a small natural language dataset to further confirm our findings on our synthetic dataset.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.