Vulnerability detectors based on deep learning (DL) models have proven their effectiveness in recent years. However, the shroud of opacity surrounding the decision-making process of these detectors makes it difficult for security analysts to comprehend. To address this, various explanation approaches have been proposed to explain the predictions by highlighting important features, which have been demonstrated effective in other domains such as computer vision and natural language processing. Unfortunately, an in-depth evaluation of vulnerability-critical features, such as fine-grained vulnerability-related code lines, learned and understood by these explanation approaches remains lacking. In this study, we first evaluate the performance of ten explanation approaches for vulnerability detectors based on graph and sequence representations, measured by two quantitative metrics including fidelity and vulnerability line coverage rate. Our results show that fidelity alone is not sufficient for evaluating these approaches, as fidelity incurs significant fluctuations across different datasets and detectors. We subsequently check the precision of the vulnerability-related code lines reported by the explanation approaches, and find poor accuracy in this task among all of them. This can be attributed to the inefficiency of explainers in selecting important features and the presence of irrelevant artifacts learned by DL-based detectors.
With the capacity to capture high-order collaborative signals, Graph Neural Networks (GNNs) have emerged as powerful methods in Recommender Systems (RS). However, their efficacy often hinges on the assumption that training and testing data share the same distribution (a.k.a. IID assumption), and exhibits significant declines under distribution shifts. Distribution shifts commonly arises in RS, often attributed to the dynamic nature of user preferences or ubiquitous biases during data collection in RS. Despite its significance, researches on GNN-based recommendation against distribution shift are still sparse. To bridge this gap, we propose Distributionally Robust GNN (DR-GNN) that incorporates Distributional Robust Optimization (DRO) into the GNN-based recommendation. DR-GNN addresses two core challenges: 1) To enable DRO to cater to graph data intertwined with GNN, we reinterpret GNN as a graph smoothing regularizer, thereby facilitating the nuanced application of DRO; 2) Given the typically sparse nature of recommendation data, which might impede robust optimization, we introduce slight perturbations in the training distribution to expand its support. Notably, while DR-GNN involves complex optimization, it can be implemented easily and efficiently. Our extensive experiments validate the effectiveness of DR-GNN against three typical distribution shifts. The code is available at //github.com/WANGBohaO-jpg/DR-GNN .
In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: //github.com/XueyangFeng/ReHAC.
TorchCP is a Python toolbox for conformal prediction research on deep learning models. It contains various implementations for posthoc and training methods for classification and regression tasks (including multi-dimension output). TorchCP is built on PyTorch (Paszke et al., 2019) and leverages the advantages of matrix computation to provide concise and efficient inference implementations. The code is licensed under the LGPL license and is open-sourced at $\href{//github.com/ml-stat-Sustech/TorchCP}{\text{this https URL}}$.
Medical image segmentation is increasingly reliant on deep learning techniques, yet the promising performance often come with high annotation costs. This paper introduces Weak-Mamba-UNet, an innovative weakly-supervised learning (WSL) framework that leverages the capabilities of Convolutional Neural Network (CNN), Vision Transformer (ViT), and the cutting-edge Visual Mamba (VMamba) architecture for medical image segmentation, especially when dealing with scribble-based annotations. The proposed WSL strategy incorporates three distinct architecture but same symmetrical encoder-decoder networks: a CNN-based UNet for detailed local feature extraction, a Swin Transformer-based SwinUNet for comprehensive global context understanding, and a VMamba-based Mamba-UNet for efficient long-range dependency modeling. The key concept of this framework is a collaborative and cross-supervisory mechanism that employs pseudo labels to facilitate iterative learning and refinement across the networks. The effectiveness of Weak-Mamba-UNet is validated on a publicly available MRI cardiac segmentation dataset with processed scribble annotations, where it surpasses the performance of a similar WSL framework utilizing only UNet or SwinUNet. This highlights its potential in scenarios with sparse or imprecise annotations. The source code is made publicly accessible.
Is preferred tokenization for humans also preferred for machine-learning (ML) models? This study examines the relations between preferred tokenization for humans (appropriateness and readability) and one for ML models (performance on an NLP task). The question texts of the Japanese commonsense question-answering dataset are tokenized with six different tokenizers, and the performances of human annotators and ML models were compared. Furthermore, we analyze relations among performance of answers by human and ML model, the appropriateness of tokenization for human, and response time to questions by human. This study provides a quantitative investigation result that shows that preferred tokenizations for humans and ML models are not necessarily always the same. The result also implies that existing methods using language models for tokenization could be a good compromise both for human and ML models.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.