Machine learning has proven to be a useful tool for automated malware detection, but machine learning models have also been shown to be vulnerable to adversarial attacks. This article addresses the problem of generating adversarial malware samples, specifically malicious Windows Portable Executable files. We summarize and compare work that has focused on adversarial machine learning for malware detection. We use gradient-based, evolutionary algorithm-based, and reinforcement-based methods to generate adversarial samples, and then test the generated samples against selected antivirus products. We compare the selected methods in terms of accuracy and practical applicability. The results show that applying optimized modifications to previously detected malware can lead to incorrect classification of the file as benign. It is also known that generated malware samples can be successfully used against detection models other than those used to generate them and that using combinations of generators can create new samples that evade detection. Experiments show that the Gym-malware generator, which uses a reinforcement learning approach, has the greatest practical potential. This generator achieved an average sample generation time of 5.73 seconds and the highest average evasion rate of 44.11%. Using the Gym-malware generator in combination with itself improved the evasion rate to 58.35%.
Deep learning models have achieved state-of-the-art performances in various domains, while they are vulnerable to the inputs with well-crafted but small perturbations, which are named after adversarial examples (AEs). Among many strategies to improve the model robustness against AEs, Projected Gradient Descent (PGD) based adversarial training is one of the most effective methods. Unfortunately, the prohibitive computational overhead of generating strong enough AEs, due to the maximization of the loss function, sometimes makes the regular PGD adversarial training impractical when using larger and more complicated models. In this paper, we propose that the adversarial loss can be approximated by the partial sum of Taylor series. Furthermore, we approximate the gradient of adversarial loss and propose a new and efficient adversarial training method, adversarial training with gradient approximation (GAAT), to reduce the cost of building up robust models. Additionally, extensive experiments demonstrate that this efficiency improvement can be achieved without any or with very little loss in accuracy on natural and adversarial examples, which show that our proposed method saves up to 60\% of the training time with comparable model test accuracy on MNIST, CIFAR-10 and CIFAR-100 datasets.
A foundation model is a machine learning model trained on a large and diverse set of data, typically using self-supervised learning-based pre-training techniques, that can be adapted to various downstream tasks. However, current research on time series pre-training has mostly focused on models pre-trained solely on data from a single domain, resulting in a lack of knowledge about other types of time series. However, current research on time series pre-training has predominantly focused on models trained exclusively on data from a single domain. As a result, these models possess domain-specific knowledge that may not be easily transferable to time series from other domains. In this paper, we aim to develop an effective time series foundation model by leveraging unlabeled samples from multiple domains. To achieve this, we repurposed the publicly available UCR Archive and evaluated four existing self-supervised learning-based pre-training methods, along with a novel method, on the datasets. We tested these methods using four popular neural network architectures for time series to understand how the pre-training methods interact with different network designs. Our experimental results show that pre-training improves downstream classification tasks by enhancing the convergence of the fine-tuning process. Furthermore, we found that the proposed pre-training method, when combined with the Transformer model, outperforms the alternatives.
Continual learning is a desirable feature in many modern machine learning applications, which allows in-field adaptation and updating, ranging from accommodating distribution shift, to fine-tuning, and to learning new tasks. For applications with privacy and low latency requirements, the compute and memory demands imposed by continual learning can be cost-prohibitive for resource-constraint edge platforms. Reducing computational precision through fully quantized training (FQT) simultaneously reduces memory footprint and increases compute efficiency for both training and inference. However, aggressive quantization especially integer FQT typically degrades model accuracy to unacceptable levels. In this paper, we propose a technique that leverages inexpensive Hadamard transforms to enable low-precision training with only integer matrix multiplications. We further determine which tensors need stochastic rounding and propose tiled matrix multiplication to enable low-bit width accumulators. We demonstrate the effectiveness of our technique on several human activity recognition datasets and CIFAR100 in a class incremental learning setting. We achieve less than 0.5% and 3% accuracy degradation while we quantize all matrix multiplications inputs down to 4-bits with 8-bit accumulators.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.
While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.