We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual learning of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.
Detecting bugs in Deep Learning (DL) libraries is critical for almost all downstream DL systems in ensuring effectiveness and safety for the end users. As such, researchers have started developing various fuzzing or testing techniques targeting DL libraries. Previous work can be mainly classified into API-level fuzzing and model-level fuzzing. However, both types of techniques cannot detect bugs that can only be exposed by complex API sequences - API-level fuzzers cannot cover API sequences, while model-level fuzzers can only cover specific API sequence patterns and a small subset of APIs due to complicated input/shape constraints for tensor computations. To address these limitations, we propose LLMFuzz - the first automated approach to directly leveraging Large Pre-trained Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are trained on billions of code snippets and can autoregressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn the intricate DL API constraints and directly generate/mutate valid DL programs for fuzzing DL libraries. More specifically, we first directly use a generative LLM (e.g., Codex) to generate highquality seed programs based on input prompts. Then, we leverage an evolutionary fuzzing loop which applies an infilling LLM (e.g., InCoder) to further perform small mutations on the seed programs to generate more diverse API sequences for fuzzing DL libraries. Our experimental results on popular DL libraries demonstrate that LLMFuzz is able to cover 91.11% / 24.09% more APIs and achieve 30.38% / 50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow / PyTorch. Furthermore, LLMFuzz is able to detect 65 bugs, with 41 already confirmed as previously unknown bugs.
Graph neural networks (GNNs) have become a powerful tool for processing graph-structured data but still face challenges in effectively aggregating and propagating information between layers, which limits their performance. We tackle this problem with the kernel regression (KR) approach, using KR loss as the primary loss in self-supervised settings or as a regularization term in supervised settings. We show substantial performance improvements compared to state-of-the-art in both scenarios on multiple transductive and inductive node classification datasets, especially for deep networks. As opposed to mutual information (MI), KR loss is convex and easy to estimate in high-dimensional cases, even though it indirectly maximizes the MI between its inputs. Our work highlights the potential of KR to advance the field of graph representation learning and enhance the performance of GNNs. The code to reproduce our experiments is available at //github.com/Anonymous1252022/KR_for_GNNs
Many tasks in video analysis and understanding boil down to the need for frame-based feature learning, aiming to encapsulate the relevant visual content so as to enable simpler and easier subsequent processing. While supervised strategies for this learning task can be envisioned, self and weakly-supervised alternatives are preferred due to the difficulties in getting labeled data. This paper introduces LRProp -- a novel weakly-supervised representation learning approach, with an emphasis on the application of temporal alignment between pairs of videos of the same action category. The proposed approach uses a transformer encoder for extracting frame-level features, and employs the DTW algorithm within the training iterations in order to identify the alignment path between video pairs. Through a process referred to as ``pair-wise position propagation'', the probability distributions of these correspondences per location are matched with the similarity of the frame-level features via KL-divergence minimization. The proposed algorithm uses also a regularized SoftDTW loss for better tuning the learned features. Our novel representation learning paradigm consistently outperforms the state of the art on temporal alignment tasks, establishing a new performance bar over several downstream video analysis applications.
Crowdsourcing has been used to collect data at scale in numerous fields. Triplet similarity comparison is a type of crowdsourcing task, in which crowd workers are asked the question ``among three given objects, which two are more similar?'', which is relatively easy for humans to answer. However, the comparison can be sometimes based on multiple views, i.e., different independent attributes such as color and shape. Each view may lead to different results for the same three objects. Although an algorithm was proposed in prior work to produce multiview embeddings, it involves at least two problems: (1) the existing algorithm cannot independently predict multiview embeddings for a new sample, and (2) different people may prefer different views. In this study, we propose an end-to-end inductive deep learning framework to solve the multiview representation learning problem. The results show that our proposed method can obtain multiview embeddings of any object, in which each view corresponds to an independent attribute of the object. We collected two datasets from a crowdsourcing platform to experimentally investigate the performance of our proposed approach compared to conventional baseline methods.
Spatio-temporal representation learning is critical for video self-supervised representation. Recent approaches mainly use contrastive learning and pretext tasks. However, these approaches learn representation by discriminating sampled instances via feature similarity in the latent space while ignoring the intermediate state of the learned representations, which limits the overall performance. In this work, taking into account the degree of similarity of sampled instances as the intermediate state, we propose a novel pretext task - spatio-temporal overlap rate (STOR) prediction. It stems from the observation that humans are capable of discriminating the overlap rates of videos in space and time. This task encourages the model to discriminate the STOR of two generated samples to learn the representations. Moreover, we employ a joint optimization combining pretext tasks with contrastive learning to further enhance the spatio-temporal representation learning. We also study the mutual influence of each component in the proposed scheme. Extensive experiments demonstrate that our proposed STOR task can favor both contrastive learning and pretext tasks. The joint optimization scheme can significantly improve the spatio-temporal representation in video understanding. The code is available at //github.com/Katou2/CSTP.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.
Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.