Reinforcement learning (RL) has proven to be highly effective in tackling complex decision-making and control tasks. However, prevalent model-free RL methods often face severe performance degradation due to the well-known overestimation issue. In response to this problem, we recently introduced an off-policy RL algorithm, called distributional soft actor-critic (DSAC or DSAC-v1), which can effectively improve the value estimation accuracy by learning a continuous Gaussian value distribution. Nonetheless, standard DSAC has its own shortcomings, including occasionally unstable learning processes and the necessity for task-specific reward scaling, which may hinder its overall performance and adaptability in some special tasks. This paper further introduces three important refinements to standard DSAC in order to address these shortcomings. These refinements consist of expected value substituting, twin value distribution learning, and variance-based critic gradient adjusting. The modified RL algorithm is named as DSAC with three refinements (DSAC-T or DSAC-v2), and its performances are systematically evaluated on a diverse set of benchmark tasks. Without any task-specific hyperparameter tuning, DSAC-T surpasses or matches a lot of mainstream model-free RL algorithms, including SAC, TD3, DDPG, TRPO, and PPO, in all tested environments. Additionally, DSAC-T, unlike its standard version, ensures a highly stable learning process and delivers similar performance across varying reward scales.
Incremental learning (IL) is essential to realize the human-level intelligence in the neural network. However, existing IL scenarios and datasets are unqualified for assessing forgetting in PLMs, giving an illusion that PLMs do not suffer from catastrophic forgetting. To this end, we propose a challenging IL scenario called instance-incremental learning (IIL) and a novel dataset called Concept-1K, which supports an order of magnitude larger IL steps. Based on the experiments on Concept-1K, we reveal that billion-parameter PLMs still suffer from catastrophic forgetting, and the forgetting is affected by both model scale, pretraining, and buffer size. Furthermore, existing IL methods and a popular finetuning technique, LoRA, fail to achieve satisfactory performance. Our study provides a novel scenario for future studies to explore the catastrophic forgetting of PLMs and encourage more powerful techniques to be designed for alleviating the forgetting in PLMs. The data, code and scripts are publicly available at //github.com/zzz47zzz/pretrained-lm-for-incremental-learning.
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance. This problem usually arises due to the overfitting problem, which is characterized by learning everything presented in the training set, resulting in overconfident predictions during testing. Existing methods typically address overfitting and mitigate the miscalibration by adding a maximum-entropy regularizer to the objective function. The objective can be understood as seeking a model that fits the ground-truth labels by increasing the confidence while also maximizing the entropy of predicted probabilities by decreasing the confidence. However, previous methods lack clear guidance on confidence adjustment, leading to conflicting objectives (increasing but also decreasing confidence). Therefore, we introduce a method called Dynamic Regularization (DReg), which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off. At a high level, DReg aims to obtain a more reliable model capable of acknowledging what it knows and does not know. Specifically, DReg effectively fits the labels for in-distribution samples (samples that should be learned) while applying regularization dynamically to samples beyond model capabilities (e.g., outliers), thereby obtaining a robust calibrated model especially on the samples beyond model capabilities. Both theoretical and empirical analyses sufficiently demonstrate the superiority of DReg compared with previous methods.
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data. However, the training process of Large Language Models (LLMs) generally incurs the update of significant parameters, which limits the applicability of FL techniques to tackle the LLMs in real scenarios. Prompt tuning can significantly reduce the number of parameters to update, but it either incurs performance degradation or low training efficiency. The straightforward utilization of prompt tuning in the FL often raises non-trivial communication costs and dramatically degrades performance. In addition, the decentralized data is generally non-Independent and Identically Distributed (non-IID), which brings client drift problems and thus poor performance. This paper proposes a Parameter-efficient prompt Tuning approach with Adaptive Optimization, i.e., FedPepTAO, to enable efficient and effective FL of LLMs. First, an efficient partial prompt tuning approach is proposed to improve performance and efficiency simultaneously. Second, a novel adaptive optimization method is developed to address the client drift problems on both the device and server sides to enhance performance further. Extensive experiments based on 10 datasets demonstrate the superb performance (up to 60.8\% in terms of accuracy) and efficiency (up to 97.59\% in terms of training time) of FedPepTAO compared with 9 baseline approaches. Our code is available at //github.com/llm-eff/FedPepTAO.
Federated learning (FL) has been widely adopted for collaborative training on decentralized data. However, it faces the challenges of data, system, and model heterogeneity. This has inspired the emergence of model-heterogeneous personalized federated learning (MHPFL). Nevertheless, the problem of ensuring data and model privacy, while achieving good model performance and keeping communication and computation costs low remains open in MHPFL. To address this problem, we propose a model-heterogeneous personalized Federated learning with Mixture of Experts (pFedMoE) method. It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model. Firstly, during local training, the local heterogeneous model's feature extractor acts as a local expert for personalized feature (representation) extraction, while the shared homogeneous small feature extractor serves as a global expert for generalized feature extraction. The local gating network produces personalized weights for extracted representations from both experts on each data sample. The three models form a local heterogeneous MoE. The weighted mixed representation fuses generalized and personalized features and is processed by the local heterogeneous large model's header with personalized prediction information. The MoE and prediction header are updated simultaneously. Secondly, the trained local homogeneous small feature extractors are sent to the server for cross-client information fusion via aggregation. Overall, pFedMoE enhances local model personalization at a fine-grained data level, while supporting model heterogeneity.
Understanding how failure occurs and how it can be prevented in reinforcement learning (RL) is necessary to enable debugging, maintain user trust, and develop personalized policies. Counterfactual reasoning has often been used to assign blame and understand failure by searching for the closest possible world in which the failure is avoided. However, current counterfactual state explanations in RL can only explain an outcome using just the current state features and offer no actionable recourse on how a negative outcome could have been prevented. In this work, we propose ACTER (Actionable Counterfactual Sequences for Explaining Reinforcement Learning Outcomes), an algorithm for generating counterfactual sequences that provides actionable advice on how failure can be avoided. ACTER investigates actions leading to a failure and uses the evolutionary algorithm NSGA-II to generate counterfactual sequences of actions that prevent it with minimal changes and high certainty even in stochastic environments. Additionally, ACTER generates a set of multiple diverse counterfactual sequences that enable users to correct failure in the way that best fits their preferences. We also introduce three diversity metrics that can be used for evaluating the diversity of counterfactual sequences. We evaluate ACTER in two RL environments, with both discrete and continuous actions, and show that it can generate actionable and diverse counterfactual sequences. We conduct a user study to explore how explanations generated by ACTER help users identify and correct failure.
We present Premier-TACO, a multitask feature representation learning approach designed to improve few-shot policy learning efficiency in sequential decision-making tasks. Premier-TACO leverages a subset of multitask offline datasets for pretraining a general feature representation, which captures critical environmental dynamics and is fine-tuned using minimal expert demonstrations. It advances the temporal action contrastive learning (TACO) objective, known for state-of-the-art results in visual control tasks, by incorporating a novel negative example sampling strategy. This strategy is crucial in significantly boosting TACO's computational efficiency, making large-scale multitask offline pretraining feasible. Our extensive empirical evaluation in a diverse set of continuous control benchmarks including Deepmind Control Suite, MetaWorld, and LIBERO demonstrate Premier-TACO's effectiveness in pretraining visual representations, significantly enhancing few-shot imitation learning of novel tasks. Our code, pretraining data, as well as pretrained model checkpoints will be released at //github.com/PremierTACO/premier-taco.
Regression is a fundamental task in machine learning that has garnered extensive attention over the past decades. The conventional approach for regression involves employing loss functions that primarily concentrate on aligning model prediction with the ground truth for each individual data sample, which, as we show, can result in sub-optimal prediction of the relationships between the different samples. Recent research endeavors have introduced novel perspectives by incorporating label similarity information to regression. However, a notable gap persists in these approaches when it comes to fully capturing the intricacies of the underlying ground truth function. In this work, we propose FAR (Function Aligned Regression) as a arguably better and more efficient solution to fit the underlying function of ground truth by capturing functional derivatives. We demonstrate the effectiveness of the proposed method practically on 2 synthetic datasets and on 8 extensive real-world tasks from 6 benchmark datasets with other 8 competitive baselines. The code is open-sourced at \url{//github.com/DixianZhu/FAR}.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.