The unprecedented development of non-terrestrial networks (NTN) utilizes the low-altitude airspace for commercial and social flying activities. The integration of NTN and terres- trial networks leads to the emergence of low-altitude economy (LAE). A series of LAE application scenarios are enabled by the sensing, communication, and transportation functionalities of the aircrafts. The prerequisite technologies supporting LAE are introduced in this paper, including the network coverage and aircrafts detection. The LAE functionalities assisted by aircrafts with respect to sensing and communication are then summarized, including the terrestrial and non-terrestrial targets sensing, ubiquitous coverage, relaying, and traffic offloading. Finally, several future directions are identified, including aircrafts collaboration, energy efficiency, and artificial intelligence enabled LAE.
The integration of Multi-Rotor Aerial Vehicles (MRAVs) into 5G and 6G networks enhances coverage, connectivity, and congestion management. This fosters communication-aware robotics, exploring the interplay between robotics and communications, but also makes the MRAVs susceptible to malicious attacks, such as jamming. One traditional approach to counter these attacks is the use of beamforming on the MRAVs to apply physical layer security techniques. In this paper, we explore pose optimization as an alternative approach to countering jamming attacks on MRAVs. This technique is intended for omnidirectional MRAVs, which are drones capable of independently controlling both their position and orientation, as opposed to the more common underactuated MRAVs whose orientation cannot be controlled independently of their position. In this paper, we consider an omnidirectional MRAV serving as a Base Station (BS) for legitimate ground nodes, under attack by a malicious jammer. We optimize the MRAV pose (i.e., position and orientation) to maximize the minimum Signal-to-Interference-plus-Noise Ratio (SINR) over all legitimate nodes.
A critical concern within the realm of visible light communications (VLC) pertains to enhancing system data rate, particularly in scenarios where the direct line-of-sight (LoS) connection is obstructed by obstacles. The deployment of meta-surface-based simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) has emerged to combat challenging LoS blockage scenarios and to provide 360 coverage in radio-frequency wireless systems. Recently, the concept of optical simultaneous transmission and reflection reconfigurable intelligent surface (OSTAR-RIS) has been promoted for VLC systems. This work is dedicated to studying the performance of OSTAR-RIS in detail and unveiling the VLC system performance gain under such technology. Specifically, we propose a novel multi-user indoor VLC system that is assisted by OSTAR-RIS. To improve the sum rate performance of the proposed system, both power-domain non-orthogonal multiple access (NOMA) and rate splitting multiple access (RSMA) are investigated in this work. To realize this, a sum rate maximization problem that jointly optimizes the roll and yaw angles of the reflector elements as well as the refractive index of the refractor elements in OSTAR-RIS is formulated, solved, and evaluated. The maximization problem takes into account practical considerations, such as the presence of non-users (i.e., blockers) and the orientation of the recipient's device. The sine-cosine meta-heuristic algorithm is employed to get the optimal solution of the formulated non-convex optimization problem. Moreover, the study delves into the sum energy efficiency optimization of the proposed system. Simulation results indicate that the proposed OSTAR-RIS RSMA-aided VLC system outperforms the OSTAR-RIS NOMA-based VLC system in terms of both the sum rate and the sum energy efficiency.
The integration of a near-space information network (NSIN) with the reconfigurable intelligent surface (RIS) is envisioned to significantly enhance the communication performance of future wireless communication systems by proactively altering wireless channels. This paper investigates the problem of deploying a RIS-integrated NSIN to provide energy-efficient, ultra-reliable and low-latency communications (URLLC) services. We mathematically formulate this problem as a resource optimization problem, aiming to maximize the effective throughput and minimize the system power consumption, subject to URLLC and physical resource constraints. The formulated problem is challenging in terms of accurate channel estimation, RIS phase alignment, theoretical analysis, and effective solution. We propose a joint resource allocation algorithm to handle these challenges. In this algorithm, we develop an accurate channel estimation approach by exploring message passing and optimize phase shifts of RIS reflecting elements to further increase the channel gain. Besides, we derive an analysis-friend expression of decoding error probability and decompose the problem into two-layered optimization problems by analyzing the monotonicity, which makes the formulated problem analytically tractable. Extensive simulations have been conducted to verify the performance of the proposed algorithm. Simulation results show that the proposed algorithm can achieve outstanding channel estimation performance and is more energy-efficient than diverse benchmark algorithms.
Near-space information networks (NSIN) composed of high-altitude platforms (HAPs), high- and low-altitude unmanned aerial vehicles (UAVs) are a new regime for providing quick, robust, and cost-efficient sensing and communication services. Precipitated by innovations and breakthroughs in manufacturing, materials, communications, electronics, and control technologies, NSIN have emerged as an essential component of the emerging sixth-generation of mobile communication systems. This article aims at {presenting some critical issues and design proposals in our actual NSIN and} discussing the latest advances in NSIN in the research areas of channel modeling, networking, and transmission from a forward-looking, comparative, and technological evolutionary perspective. In this article, we highlight the characteristics of NSIN and present the promising use-cases of NSIN. The impact of airborne platforms' unstable movements on the phase delays of onboard antenna arrays with diverse structures is mathematically analyzed. The recent advancements in HAP channel modeling are elaborated on, along with the significant differences between HAP and UAV channel modeling. A comprehensive review of the networking technologies of NSIN in network deployment, handoff management, and network management aspects is provided. Besides, the promising technologies and communication protocols of the physical (PHY) layer, medium access control (MAC) layer, network layer, and transport layer of NSINs for achieving efficient transmission over NSINs are overviewed, {and we have conducted experiments with our actual NSIN to verify the performance of some techniques}. Finally, we outline some open issues and promising directions of NSINs deserved for future study and discuss the corresponding challenges.
We propose integrally pre-trained transformer pyramid network (iTPN), towards jointly optimizing the network backbone and the neck, so that transfer gap between representation models and downstream tasks is minimal. iTPN is born with two elaborated designs: 1) The first pre-trained feature pyramid upon vision transformer (ViT). 2) Multi-stage supervision to the feature pyramid using masked feature modeling (MFM). iTPN is updated to Fast-iTPN, reducing computational memory overhead and accelerating inference through two flexible designs. 1) Token migration: dropping redundant tokens of the backbone while replenishing them in the feature pyramid without attention operations. 2) Token gathering: reducing computation cost caused by global attention by introducing few gathering tokens. The base/large-level Fast-iTPN achieve 88.75%/89.5% top-1 accuracy on ImageNet-1K. With 1x training schedule using DINO, the base/large-level Fast-iTPN achieves 58.4%/58.8% box AP on COCO object detection, and a 57.5%/58.7% mIoU on ADE20K semantic segmentation using MaskDINO. Fast-iTPN can accelerate the inference procedure by up to 70%, with negligible performance loss, demonstrating the potential to be a powerful backbone for downstream vision tasks. The code is available at: github.com/sunsmarterjie/iTPN.
This work studies the modeling and optimization of beyond diagonal reconfigurable intelligent surface (BD-RIS) aided wireless communication systems in the presence of mutual coupling among the RIS elements. Specifically, we first derive the mutual coupling aware BD-RIS aided communication model using scattering and impedance parameter analysis. Based on the obtained communication model, we propose a general BD-RIS optimization algorithm applicable to different architectures of BD-RIS to maximize the channel gain. Numerical results validate the effectiveness of the proposed design and demonstrate that the larger the mutual coupling the larger the gain offered by BD-RIS over conventional diagonal RIS.
Training deep neural networks (DNNs) requires large datasets and powerful computing resources, which has led some owners to restrict redistribution without permission. Watermarking techniques that embed confidential data into DNNs have been used to protect ownership, but these can degrade model performance and are vulnerable to watermark removal attacks. Recently, DeepJudge was introduced as an alternative approach to measuring the similarity between a suspect and a victim model. While DeepJudge shows promise in addressing the shortcomings of watermarking, it primarily addresses situations where the suspect model copies the victim's architecture. In this study, we introduce DeepTaster, a novel DNN fingerprinting technique, to address scenarios where a victim's data is unlawfully used to build a suspect model. DeepTaster can effectively identify such DNN model theft attacks, even when the suspect model's architecture deviates from the victim's. To accomplish this, DeepTaster generates adversarial images with perturbations, transforms them into the Fourier frequency domain, and uses these transformed images to identify the dataset used in a suspect model. The underlying premise is that adversarial images can capture the unique characteristics of DNNs built with a specific dataset. To demonstrate the effectiveness of DeepTaster, we evaluated the effectiveness of DeepTaster by assessing its detection accuracy on three datasets (CIFAR10, MNIST, and Tiny-ImageNet) across three model architectures (ResNet18, VGG16, and DenseNet161). We conducted experiments under various attack scenarios, including transfer learning, pruning, fine-tuning, and data augmentation. Specifically, in the Multi-Architecture Attack scenario, DeepTaster was able to identify all the stolen cases across all datasets, while DeepJudge failed to detect any of the cases.
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.