Joint estimation of grasped object pose and externally made contact on the object is central to robust and dexterous manipulation. In this paper, we propose a novel state-estimation algorithm that jointly estimates contact location and object pose in 3D using exclusively proprioceptive tactile feedback. Our approach leverages two complementary particle filters: one to estimate contact location (CPFGrasp) and another to estimate object poses (SCOPE). We implement and evaluate our approach on real-world single-arm and dual-arm robotic systems. We demonstrate how by bringing two objects into contact, the robots can infer contact location and object poses simultaneously. Our proposed method can be applied to a number of downstream tasks that require accurate pose estimates, such as assembly and insertion.
This paper introduces an Online Localisation and Colored Mesh Reconstruction (OLCMR) ROS perception architecture for ground exploration robots aiming to perform robust Simultaneous Localisation And Mapping (SLAM) in challenging unknown environments and provide an associated colored 3D mesh representation in real time. It is intended to be used by a remote human operator to easily visualise the mapped environment during or after the mission or as a development base for further researches in the field of exploration robotics. The architecture is mainly composed of carefully-selected open-source ROS implementations of a LiDAR-based SLAM algorithm alongside a colored surface reconstruction procedure using a point cloud and RGB camera images projected into the 3D space. The overall performances are evaluated on the Newer College handheld LiDAR-Vision reference dataset and on two experimental trajectories gathered on board of representative wheeled robots in respectively urban and countryside outdoor environments. Index Terms: Field Robots, Mapping, SLAM, Colored Surface Reconstruction
Inspired by the human ability to perform complex manipulation in the complete absence of vision (like retrieving an object from a pocket), the robotic manipulation field is motivated to develop new methods for tactile-based object interaction. However, tactile sensing presents the challenge of being an active sensing modality: a touch sensor provides sparse, local data, and must be used in conjunction with effective exploration strategies in order to collect information. In this work, we focus on the process of guiding tactile exploration, and its interplay with task-related decision making. We propose TANDEM (TActile exploration aNd DEcision Making), an architecture to learn efficient exploration strategies in conjunction with decision making. Our approach is based on separate but co-trained modules for exploration and discrimination. We demonstrate this method on a tactile object recognition task, where a robot equipped with a touch sensor must explore and identify an object from a known set based on binary contact signals alone. TANDEM achieves higher accuracy with fewer actions than alternative methods and is also shown to be more robust to sensor noise.
Object reconstruction from 3D point clouds has achieved impressive progress in the computer vision and computer graphics research field. However, reconstruction from time-varying point clouds (a.k.a. 4D point clouds) is generally overlooked. In this paper, we propose a new network architecture, namely RFNet-4D, that jointly reconstruct objects and their motion flows from 4D point clouds. The key insight is that simultaneously performing both tasks via learning spatial and temporal features from a sequence of point clouds can leverage individual tasks, leading to improved overall performance. To prove this ability, we design a temporal vector field learning module using unsupervised learning approach for flow estimation, leveraged by supervised learning of spatial structures for object reconstruction. Extensive experiments and analyses on benchmark dataset validated the effectiveness and efficiency of our method. As shown in experimental results, our method achieves state-of-the-art performance on both flow estimation and object reconstruction while performing much faster than existing methods in both training and inference. Our code and data are available at //github.com/hkust-vgd/RFNet-4D
Significant geometric structures can be compactly described by global wireframes in the estimation of 3D room layout from a single panoramic image. Based on this observation, we present an alternative approach to estimate the walls in 3D space by modeling long-range geometric patterns in a learnable Hough Transform block. We transform the image feature from a cubemap tile to the Hough space of a Manhattan world and directly map the feature to the geometric output. The convolutional layers not only learn the local gradient-like line features, but also utilize the global information to successfully predict occluded walls with a simple network structure. Unlike most previous work, the predictions are performed individually on each cubemap tile, and then assembled to get the layout estimation. Experimental results show that we achieve comparable results with recent state-of-the-art in prediction accuracy and performance. Code is available at //github.com/Starrah/DMH-Net.
Many mobile manufacturers recently have adopted Dual-Pixel (DP) sensors in their flagship models for faster auto-focus and aesthetic image captures. Despite their advantages, research on their usage for 3D facial understanding has been limited due to the lack of datasets and algorithmic designs that exploit parallax in DP images. This is because the baseline of sub-aperture images is extremely narrow and parallax exists in the defocus blur region. In this paper, we introduce a DP-oriented Depth/Normal network that reconstructs the 3D facial geometry. For this purpose, we collect a DP facial data with more than 135K images for 101 persons captured with our multi-camera structured light systems. It contains the corresponding ground-truth 3D models including depth map and surface normal in metric scale. Our dataset allows the proposed matching network to be generalized for 3D facial depth/normal estimation. The proposed network consists of two novel modules: Adaptive Sampling Module and Adaptive Normal Module, which are specialized in handling the defocus blur in DP images. Finally, the proposed method achieves state-of-the-art performances over recent DP-based depth/normal estimation methods. We also demonstrate the applicability of the estimated depth/normal to face spoofing and relighting.
Propensity score weighting is widely used to improve the representativeness and correct the selection bias in the voluntary sample. The propensity score is often developed using a model for the sampling probability, which can be subject to model misspecification. In this paper, we consider an alternative approach of estimating the inverse of the propensity scores using the density ratio function satisfying the self-efficiency condition. The smoothed density ratio function is obtained by the solution to the information projection onto the space satisfying the moment conditions on the balancing scores. By including the covariates for the outcome regression models only in the density ratio model, we can achieve efficient propensity score estimation. Penalized regression is used to identify important covariates. We further extend the proposed approach to the multivariate missing case. Some limited simulation studies are presented to compare with the existing methods.
The problems of low light image noise and chromatic aberration is a challenging problem for tasks such as object detection, semantic segmentation, instance segmentation, etc. In this paper, we propose the algorithm for low illumination enhancement. KinD-LCE uses the light curve estimation module in the network structure to enhance the illumination map in the Retinex decomposed image, which improves the image brightness; we proposed the illumination map and reflection map fusion module to restore the restored image details and reduce the detail loss. Finally, we included a total variation loss function to eliminate noise. Our method uses the GladNet dataset as the training set, and the LOL dataset as the test set and is validated using ExDark as the dataset for downstream tasks. Extensive Experiments on the benchmarks demonstrate the advantages of our method and are close to the state-of-the-art results, which achieve a PSNR of 19.7216 and SSIM of 0.8213 in terms of metrics.
In keypoint estimation tasks such as human pose estimation, heatmap-based regression is the dominant approach despite possessing notable drawbacks: heatmaps intrinsically suffer from quantization error and require excessive computation to generate and post-process. Motivated to find a more efficient solution, we propose to model individual keypoints and sets of spatially related keypoints (i.e., poses) as objects within a dense single-stage anchor-based detection framework. Hence, we call our method KAPAO (pronounced "Ka-Pow"), for Keypoints And Poses As Objects. KAPAO is applied to the problem of single-stage multi-person human pose estimation by simultaneously detecting human pose and keypoint objects and fusing the detections to exploit the strengths of both object representations. In experiments, we observe that KAPAO is faster and more accurate than previous methods, which suffer greatly from heatmap post-processing. The accuracy-speed trade-off is especially favourable in the practical setting when not using test-time augmentation. Source code: //github.com/wmcnally/kapao.
Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.