亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the fine-grained complexity of evaluating Boolean Conjunctive Queries and their generalization to sum-of-product problems over an arbitrary semiring. For these problems, we present a general semiring-oblivious reduction from the k-clique problem to any query structure (hypergraph). Our reduction uses the notion of embedding a graph to a hypergraph, first introduced by Marx. As a consequence of our reduction, we can show tight conditional lower bounds for many classes of hypergraphs, including cycles, Loomis-Whitney joins, some bipartite graphs, and chordal graphs. These lower bounds have a dependence on what we call the clique embedding power of a hypergraph H, which we believe is a quantity of independent interest. We show that the clique embedding power is always less than the submodular width of the hypergraph, and present a decidable algorithm for computing it. We conclude with many open problems for future research.

相關內容

We consider the Sobolev embedding operator $E_s : H^s(\Omega) \to L_2(\Omega)$ and its role in the solution of inverse problems. In particular, we collect various properties and investigate different characterizations of its adjoint operator $E_s^*$, which is a common component in both iterative and variational regularization methods. These include variational representations and connections to boundary value problems, Fourier and wavelet representations, as well as connections to spatial filters. Moreover, we consider characterizations in terms of Fourier series, singular value decompositions and frame decompositions, as well as representations in finite dimensional settings. While many of these results are already known to researchers from different fields, a detailed and general overview or reference work containing rigorous mathematical proofs is still missing. Hence, in this paper we aim to fill this gap by collecting, introducing and generalizing a large number of characterizations of $E_s^*$ and discuss their use in regularization methods for solving inverse problems. The resulting compilation can serve both as a reference as well as a useful guide for its efficient numerical implementation in practice.

This paper develops a fully distributed differentially-private learning algorithm to solve nonsmooth optimization problems. We distribute the Alternating Direction Method of Multipliers (ADMM) to comply with the distributed setting and employ an approximation of the augmented Lagrangian to handle nonsmooth objective functions. Furthermore, we ensure zero-concentrated differential privacy (zCDP) by perturbing the outcome of the computation at each agent with a variance-decreasing Gaussian noise. This privacy-preserving method allows for better accuracy than the conventional $(\epsilon, \delta)$-DP and stronger guarantees than the more recent R\'enyi-DP. The developed fully distributed algorithm has a competitive privacy accuracy trade-off and handles nonsmooth and non-necessarily strongly convex problems. We provide complete theoretical proof for the privacy guarantees and the convergence of the algorithm to the exact solution. We also prove under additional assumptions that the algorithm converges in linear time. Finally, we observe in simulations that the developed algorithm outperforms all of the existing methods.

Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.

Integrated circuit verification has gathered considerable interest in recent times. Since these circuits keep growing in complexity year by year, pre-Silicon (pre-SI) verification becomes ever more important, in order to ensure proper functionality. Thus, in order to reduce the time needed for manually verifying ICs, we propose a machine learning (ML) approach, which uses less simulations. This method relies on an initial evaluation set of operating condition configurations (OCCs), in order to train Gaussian process (GP) surrogate models. By using surrogate models, we can propose further, more difficult OCCs. Repeating this procedure for several iterations has shown better GP estimation of the circuit's responses, on both synthetic and real circuits, resulting in a better chance of finding the worst case, or even failures, for certain circuit responses. Thus, we show that the proposed approach is able to provide OCCs closer to the specifications for all circuits and identify a failure (specification violation) for one of the responses of a real circuit.

Dimension reduction is crucial in functional data analysis (FDA). The key tool to reduce the dimension of the data is functional principal component analysis. Existing approaches for functional principal component analysis usually involve the diagonalization of the covariance operator. With the increasing size and complexity of functional datasets, estimating the covariance operator has become more challenging. Therefore, there is a growing need for efficient methodologies to estimate the eigencomponents. Using the duality of the space of observations and the space of functional features, we propose to use the inner-product between the curves to estimate the eigenelements of multivariate and multidimensional functional datasets. The relationship between the eigenelements of the covariance operator and those of the inner-product matrix is established. We explore the application of these methodologies in several FDA settings and provide general guidance on their usability.

In many modern statistical problems, the limited available data must be used both to develop the hypotheses to test, and to test these hypotheses-that is, both for exploratory and confirmatory data analysis. Reusing the same dataset for both exploration and testing can lead to massive selection bias, leading to many false discoveries. Selective inference is a framework that allows for performing valid inference even when the same data is reused for exploration and testing. In this work, we are interested in the problem of selective inference for data clustering, where a clustering procedure is used to hypothesize a separation of the data points into a collection of subgroups, and we then wish to test whether these data-dependent clusters in fact represent meaningful differences within the data. Recent work by Gao et al. [2022] provides a framework for doing selective inference for this setting, where a hierarchical clustering algorithm is used for producing the cluster assignments, which was then extended to k-means clustering by Chen and Witten [2022]. Both these works rely on assuming a known covariance structure for the data, but in practice, the noise level needs to be estimated-and this is particularly challenging when the true cluster structure is unknown. In our work, we extend this work to the setting of noise with unknown variance, and provide a selective inference method for this more general setting. Empirical results show that our new method is better able to maintain high power while controlling Type I error when the true noise level is unknown.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司