亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, various parameter-efficient fine-tuning (PEFT) strategies for application to language models have been proposed and successfully implemented. However, this raises the question of whether PEFT, which only updates a limited set of model parameters, constitutes security vulnerabilities when confronted with weight-poisoning backdoor attacks. In this study, we show that PEFT is more susceptible to weight-poisoning backdoor attacks compared to the full-parameter fine-tuning method, with pre-defined triggers remaining exploitable and pre-defined targets maintaining high confidence, even after fine-tuning. Motivated by this insight, we developed a Poisoned Sample Identification Module (PSIM) leveraging PEFT, which identifies poisoned samples through confidence, providing robust defense against weight-poisoning backdoor attacks. Specifically, we leverage PEFT to train the PSIM with randomly reset sample labels. During the inference process, extreme confidence serves as an indicator for poisoned samples, while others are clean. We conduct experiments on text classification tasks, five fine-tuning strategies, and three weight-poisoning backdoor attack methods. Experiments show near 100% success rates for weight-poisoning backdoor attacks when utilizing PEFT. Furthermore, our defensive approach exhibits overall competitive performance in mitigating weight-poisoning backdoor attacks.

相關內容

This work introduces a sampling method capable of solving Bayesian inverse problems in function space. It does not assume the log-concavity of the likelihood, meaning that it is compatible with nonlinear inverse problems. The method leverages the recently defined infinite-dimensional score-based diffusion models as a learning-based prior, while enabling provable posterior sampling through a Langevin-type MCMC algorithm defined on function spaces. A novel convergence analysis is conducted, inspired by the fixed-point methods established for traditional regularization-by-denoising algorithms and compatible with weighted annealing. The obtained convergence bound explicitly depends on the approximation error of the score; a well-approximated score is essential to obtain a well-approximated posterior. Stylized and PDE-based examples are provided, demonstrating the validity of our convergence analysis. We conclude by presenting a discussion of the method's challenges related to learning the score and computational complexity.

Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.

Extracting scientific understanding from particle-physics experiments requires solving diverse learning problems with high precision and good data efficiency. We propose the Lorentz Geometric Algebra Transformer (L-GATr), a new multi-purpose architecture for high-energy physics. L-GATr represents high-energy data in a geometric algebra over four-dimensional space-time and is equivariant under Lorentz transformations, the symmetry group of relativistic kinematics. At the same time, the architecture is a Transformer, which makes it versatile and scalable to large systems. L-GATr is first demonstrated on regression and classification tasks from particle physics. We then construct the first Lorentz-equivariant generative model: a continuous normalizing flow based on an L-GATr network, trained with Riemannian flow matching. Across our experiments, L-GATr is on par with or outperforms strong domain-specific baselines.

Grounding the reasoning ability of large language models (LLMs) for embodied tasks is challenging due to the complexity of the physical world. Especially, LLM planning for multi-agent collaboration requires communication of agents or credit assignment as the feedback to re-adjust the proposed plans and achieve effective coordination. However, existing methods that overly rely on physical verification or self-reflection suffer from excessive and inefficient querying of LLMs. In this paper, we propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans. Specifically, we perform critic regression to learn a sequential advantage function from LLM-planned data, and then treat the LLM planner as an optimizer to generate actions that maximize the advantage function. It endows the LLM with the foresight to discern whether the action contributes to accomplishing the final task. We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems. Experiments on Overcooked-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents and query rounds of LLMs, demonstrating its high efficiency for grounding LLMs. More results are given at \url{//read-llm.github.io/}.

As large language models (LLMs) demonstrate unparalleled performance and generalization ability, LLMs are widely used and integrated into various applications. When it comes to sensitive domains, as commonly described in federated learning scenarios, directly using external LLMs on private data is strictly prohibited by stringent data security and privacy regulations. For local clients, the utilization of LLMs to improve the domain-specific small language models (SLMs), characterized by limited computational resources and domain-specific data, has attracted considerable research attention. By observing that LLMs can empower domain-specific SLMs, existing methods predominantly concentrate on leveraging the public data or LLMs to generate more data to transfer knowledge from LLMs to SLMs. However, due to the discrepancies between LLMs' generated data and clients' domain-specific data, these methods cannot yield substantial improvements in the domain-specific tasks. In this paper, we introduce a Federated Domain-specific Knowledge Transfer (FDKT) framework, which enables domain-specific knowledge transfer from LLMs to SLMs while preserving clients' data privacy. The core insight is to leverage LLMs to augment data based on domain-specific few-shot demonstrations, which are synthesized from private domain data using differential privacy. Such synthetic samples share similar data distribution with clients' private data and allow the server LLM to generate particular knowledge to improve clients' SLMs. The extensive experimental results demonstrate that the proposed FDKT framework consistently and greatly improves SLMs' task performance by around 5\% with a privacy budget of less than 10, compared to local training on private data.

Gaussian Process Regression (GPR) is widely used in statistics and machine learning for prediction tasks requiring uncertainty measures. Its efficacy depends on the appropriate specification of the mean function, covariance kernel function, and associated hyperparameters. Severe misspecifications can lead to inaccurate results and problematic consequences, especially in safety-critical applications. However, a systematic approach to handle these misspecifications is lacking in the literature. In this work, we propose a general framework to address these issues. Firstly, we introduce a flexible two-stage GPR framework that separates mean prediction and uncertainty quantification (UQ) to prevent mean misspecification, which can introduce bias into the model. Secondly, kernel function misspecification is addressed through a novel automatic kernel search algorithm, supported by theoretical analysis, that selects the optimal kernel from a candidate set. Additionally, we propose a subsampling-based warm-start strategy for hyperparameter initialization to improve efficiency and avoid hyperparameter misspecification. With much lower computational cost, our subsampling-based strategy can yield competitive or better performance than training exclusively on the full dataset. Combining all these components, we recommend two GPR methods-exact and scalable-designed to match available computational resources and specific UQ requirements. Extensive evaluation on real-world datasets, including UCI benchmarks and a safety-critical medical case study, demonstrates the robustness and precision of our methods.

This paper introduces an approach to employ clipped uniform quantization in federated learning settings, aiming to enhance model efficiency by reducing communication overhead without compromising accuracy. By employing optimal clipping thresholds and adaptive quantization schemes, our method significantly curtails the bit requirements for model weight transmissions between clients and the server. We explore the implications of symmetric clipping and uniform quantization on model performance, highlighting the utility of stochastic quantization to mitigate quantization artifacts and improve model robustness. Through extensive simulations on the MNIST dataset, our results demonstrate that the proposed method achieves near full-precision performance while ensuring substantial communication savings. Specifically, our approach facilitates efficient weight averaging based on quantization errors, effectively balancing the trade-off between communication efficiency and model accuracy. The comparative analysis with conventional quantization methods further confirms the superiority of our technique.

The objective of image captioning models is to bridge the gap between the visual and linguistic modalities by generating natural language descriptions that accurately reflect the content of input images. In recent years, researchers have leveraged deep learning-based models and made advances in the extraction of visual features and the design of multimodal connections to tackle this task. This work presents a novel approach towards developing image captioning models that utilize an external kNN memory to improve the generation process. Specifically, we propose two model variants that incorporate a knowledge retriever component that is based on visual similarities, a differentiable encoder to represent input images, and a kNN-augmented language model to predict tokens based on contextual cues and text retrieved from the external memory. We experimentally validate our approach on COCO and nocaps datasets and demonstrate that incorporating an explicit external memory can significantly enhance the quality of captions, especially with a larger retrieval corpus. This work provides valuable insights into retrieval-augmented captioning models and opens up new avenues for improving image captioning at a larger scale.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司