The transformer architectures, based on self-attention mechanism and convolution-free design, recently found superior performance and booming applications in computer vision. However, the discontinuous patch-wise tokenization process implicitly introduces jagged artifacts into attention maps, arising the traditional problem of aliasing for vision transformers. Aliasing effect occurs when discrete patterns are used to produce high frequency or continuous information, resulting in the indistinguishable distortions. Recent researches have found that modern convolution networks still suffer from this phenomenon. In this work, we analyze the uncharted problem of aliasing in vision transformer and explore to incorporate anti-aliasing properties. Specifically, we propose a plug-and-play Aliasing-Reduction Module(ARM) to alleviate the aforementioned issue. We investigate the effectiveness and generalization of the proposed method across multiple tasks and various vision transformer families. This lightweight design consistently attains a clear boost over several famous structures. Furthermore, our module also improves data efficiency and robustness of vision transformers.
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision. However, their irregular structure makes it hard to harness the potential of CNNs directly on meshes. A subdivision surface provides a hierarchical multi-resolution structure, in which each face in a closed 2-manifold triangle mesh is exactly adjacent to three faces. Motivated by these two observations, this paper presents SubdivNet, an innovative and versatile CNN framework for 3D triangle meshes with Loop subdivision sequence connectivity. Making an analogy between mesh faces and pixels in a 2D image allows us to present a mesh convolution operator to aggregate local features from nearby faces. By exploiting face neighborhoods, this convolution can support standard 2D convolutional network concepts, e.g. variable kernel size, stride, and dilation. Based on the multi-resolution hierarchy, we make use of pooling layers which uniformly merge four faces into one and an upsampling method which splits one face into four. Thereby, many popular 2D CNN architectures can be easily adapted to process 3D meshes. Meshes with arbitrary connectivity can be remeshed to have Loop subdivision sequence connectivity via self-parameterization, making SubdivNet a general approach. Extensive evaluation and various applications demonstrate SubdivNet's effectiveness and efficiency.
In recent years, mining the knowledge from asynchronous sequences by Hawkes process is a subject worthy of continued attention, and Hawkes processes based on the neural network have gradually become the most hotly researched fields, especially based on the recurrence neural network (RNN). However, these models still contain some inherent shortcomings of RNN, such as vanishing and exploding gradient and long-term dependency problems. Meanwhile, Transformer based on self-attention has achieved great success in sequential modeling like text processing and speech recognition. Although the Transformer Hawkes process (THP) has gained huge performance improvement, THPs do not effectively utilize the temporal information in the asynchronous events, for these asynchronous sequences, the event occurrence instants are as important as the types of events, while conventional THPs simply convert temporal information into position encoding and add them as the input of transformer. With this in mind, we come up with a new kind of Transformer-based Hawkes process model, Temporal Attention Augmented Transformer Hawkes Process (TAA-THP), we modify the traditional dot-product attention structure, and introduce the temporal encoding into attention structure. We conduct numerous experiments on a wide range of synthetic and real-life datasets to validate the performance of our proposed TAA-THP model, significantly improvement compared with existing baseline models on the different measurements is achieved, including log-likelihood on the test dataset, and prediction accuracies of event types and occurrence times. In addition, through the ablation studies, we vividly demonstrate the merit of introducing additional temporal attention by comparing the performance of the model with and without temporal attention.
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by the global self-attention, various methods constrain the range of attention within a local region to improve its efficiency. Consequently, their receptive fields in a single attention layer are not large enough, resulting in insufficient context modeling. To address this issue, we propose a Pale-Shaped self-Attention (PS-Attention), which performs self-attention within a pale-shaped region. Compared to the global self-attention, PS-Attention can reduce the computation and memory costs significantly. Meanwhile, it can capture richer contextual information under the similar computation complexity with previous local self-attention mechanisms. Based on the PS-Attention, we develop a general Vision Transformer backbone with a hierarchical architecture, named Pale Transformer, which achieves 83.4%, 84.3%, and 84.9% Top-1 accuracy with the model size of 22M, 48M, and 85M respectively for 224 ImageNet-1K classification, outperforming the previous Vision Transformer backbones. For downstream tasks, our Pale Transformer backbone performs better than the recent state-of-the-art CSWin Transformer by a large margin on ADE20K semantic segmentation and COCO object detection & instance segmentation. The code will be released on //github.com/BR-IDL/PaddleViT.
Vision transformers (ViTs) have recently received explosive popularity, but the huge computational cost is still a severe issue. Since the computation complexity of ViT is quadratic with respect to the input sequence length, a mainstream paradigm for computation reduction is to reduce the number of tokens. Existing designs include structured spatial compression that uses a progressive shrinking pyramid to reduce the computations of large feature maps, and unstructured token pruning that dynamically drops redundant tokens. However, the limitation of existing token pruning lies in two folds: 1) the incomplete spatial structure caused by pruning is not compatible with structured spatial compression that is commonly used in modern deep-narrow transformers; 2) it usually requires a time-consuming pre-training procedure. To tackle the limitations and expand the applicable scenario of token pruning, we present Evo-ViT, a self-motivated slow-fast token evolution approach for vision transformers. Specifically, we conduct unstructured instance-wise token selection by taking advantage of the simple and effective global class attention that is native to vision transformers. Then, we propose to update the selected informative tokens and uninformative tokens with different computation paths, namely, slow-fast updating. Since slow-fast updating mechanism maintains the spatial structure and information flow, Evo-ViT can accelerate vanilla transformers of both flat and deep-narrow structures from the very beginning of the training process. Experimental results demonstrate that our method significantly reduces the computational cost of vision transformers while maintaining comparable performance on image classification.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate both representations and their relationship. Since natural images are of high complexity with abundant detail and color information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales and locations. In this paper, we point out that the attention inside these local patches are also essential for building visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer (TNT). Specifically, we regard the local patches (e.g., 16$\times$16) as "visual sentences" and present to further divide them into smaller patches (e.g., 4$\times$4) as "visual words". The attention of each word will be calculated with other words in the given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of the state-of-the-art visual transformer with similar computational cost. The PyTorch code is available at //github.com/huawei-noah/CV-Backbones, and the MindSpore code is available at //gitee.com/mindspore/models/tree/master/research/cv/TNT.
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.
Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, \eg, the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0\% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3\% top1 accuracy in image resolution 384$\times$384 on ImageNet. (Code: //github.com/yitu-opensource/T2T-ViT)
Transformer is a type of deep neural network mainly based on self-attention mechanism which is originally applied in natural language processing field. Inspired by the strong representation ability of transformer, researchers propose to extend transformer for computer vision tasks. Transformer-based models show competitive and even better performance on various visual benchmarks compared to other network types such as convolutional networks and recurrent networks. In this paper we provide a literature review of these visual transformer models by categorizing them in different tasks and analyze the advantages and disadvantages of these methods. In particular, the main categories include the basic image classification, high-level vision, low-level vision and video processing. Self-attention in computer vision is also briefly revisited as self-attention is the base component in transformer. Efficient transformer methods are included for pushing transformer into real applications. Finally, we give a discussion about the further research directions for visual transformer.